首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对超声振动辅助磨削加工中BK7光学玻璃材料表面及亚表面的微裂纹扩展过程中的交互作用进行研究,使用维氏金刚石压头进行了BK7光学玻璃二次印压实验来模拟超声振动作用影响下单颗磨粒对光学玻璃的反复印压作用,同时采用界面粘结法获得了不同印压载荷及印压距离下产生的压痕及微裂纹形态特征及分布情况。实验结果表明:在相同载荷加载情况下,第二次印压产生的亚表面中位裂纹扩展最大深度受到侧向裂纹影响减小了30μm,同时侧向裂纹闭合后在光学玻璃材料表面及内部产生破碎。基于压痕断裂力学理论,分析了准静态载荷作用下光学玻璃内部应力场的分布及应力场驱动下微裂纹的扩展机制,对超声振动效应影响下微裂纹扩展的交互作用进行研究。结果表明:磨削过程中使用轴向超声振动辅助,能够有效地降低光学玻璃材料亚表面裂纹的深度,改善亚表面及表面加工质量,同时促进了工件材料的去除。  相似文献   

2.
对超声振动辅助磨削加工中BK7光学玻璃材料表面及亚表面的微裂纹扩展过程中的交互作用进行研究,使用维氏金刚石压头进行了BK7光学玻璃二次印压实验来模拟超声振动作用影响下单颗磨粒对光学玻璃的反复印压作用,同时采用界面黏结法获得了不同印压载荷及印压距离下产生的压痕及微裂纹的形态特征及分布情况。实验结果表明:在相同载荷加载情况下,第二次印压产生的亚表面中位裂纹扩展最大深度受到侧向裂纹影响减小了30μm,同时侧向裂纹闭合后在光学玻璃材料表面及内部产生破碎。基于压痕断裂力学理论,分析了准静态载荷作用下光学玻璃内部应力场的分布及应力场驱动下微裂纹的扩展机制,对超声振动效应影响下微裂纹扩展的交互作用进行研究。结果表明:磨削过程中使用轴向超声振动辅助,能够有效地降低光学玻璃材料亚表面裂纹的深度,改善亚表面及表面加工质量,同时促进了工件材料的去除。  相似文献   

3.
修树东  周明  李敏 《工具技术》2008,42(4):15-17
通过显微压痕和纳米压痕试验,研究了Soda-lime光学玻璃在微/纳米尺度下的材料去除机理,发现外加载荷的幅值对脆性材料变形方式有直接影响。对光学玻璃的金刚石普通切削和超声振动切削试验结果表明,超声振动切削的实际有效切削深度与名义切削深度有着较好的一致性,合理选择金刚石超声振动切削参数可实现光学玻璃的塑性域切削。  相似文献   

4.
光学玻璃塑性域切削试验研究   总被引:1,自引:0,他引:1  
对光学玻璃材料BK7进行压痕试验及超声振动变切深刻划试验.通过对BK7表面垂直加载不同的载荷,观察分析不同的载荷下材料表面的变形形式得到了材料分别发生塑性变形,脆塑转变,脆性破坏时的垂直载荷的范围和切削深度的范围.利用超声振动系统对试件进行变切深刻划试验,得到了材料由塑性切削到脆性破坏的连续变化过程的表面形貌.实验结果表明超声振动切削有效提高了临界切削深度.  相似文献   

5.
采用甩带法制备出新型Fe60Cr5Mo2Ni2W2Mn1C4Si7B17非晶合金,在室温、不同峰值载荷(3,5,7,9,12mN)和不同加载速率(1,2,3,4,5mN·s-1)下对此非晶合金进行纳米压痕试验,研究了加载速率和峰值载荷对其弹性模量、纳米压痕硬度和蠕变行为的影响。结果表明:试验合金为完全非晶态,其纳米压痕硬度和弹性模量均较高;随着峰值载荷的增大(即压入深度的增大),试验合金的纳米压痕硬度减小,表现出较明显的尺寸效应,弹性模量略有降低;随着加载速率的增加,纳米压痕硬度和弹性模量均增大;在纳米压痕试验的保载阶段,试验合金发生蠕变,其最大蠕变位移随峰值载荷或加载速率的增加而增大,蠕变应力指数则随峰值载荷的增加或加载速率的减小而增大。  相似文献   

6.
基于LS-DYNA有限元仿真平台对石英玻璃微纳米压痕加—卸载过程进行建模仿真研究。针对微纳米压痕仪的标准Berkovich压头进行建模,基于石英玻璃的本构模型,施加载荷与边界条件,采用局部细化技术进行网格划分,构建三维有限元模型。分析压头加—卸载时,压头与试件作用区域最大主应力场和等效应力场的分布,研究石英玻璃微纳米尺度的材料去除机理。对比压痕实验,验证有限元仿真的正确性和可靠性。  相似文献   

7.
纳米压痕仪被称为材料机械性质微探针,它借助于加载-卸载过程中压痕对载荷和压入深度的敏感关系,使得测试始终在薄膜材料的弹性限度内,克服了维氏法和努氏法等传统方法引起压痕边缘模糊或者碎裂的缺点,从而正确地、可靠地测试出薄膜材料的硬度和弹性模量等纳米力学性能.试验用微波电子回旋共振等离子体增强化学气相沉积技术,在不同偏压条件下制备三种类金刚石薄膜(DLC膜),用纳米压痕仪测试不同载荷下薄膜的硬度和弹性模量值.试验结果表明,材料的纳米硬度和弹性模量随着载荷的增大而逐渐减小.  相似文献   

8.
借助纳米压痕试验方法,对Cu/SAC305/Cu,Cu/SAC0705/Cu和Cu/SAC0705BiNi/Cu微焊点体钎料在不同最大载荷下的压入蠕变性能进行比较,并分析和讨论Bi、Ni元素的添加对低银Cu/SAC0705/Cu微焊点体钎料蠕变性能的影响。试验采用一次加载-卸载方式,加载时最大载荷分别为20mN、30mN、40mN和50mN,保载时间均为180s。采用FEISIRION扫描电子显微镜对微焊点体钎料在不同最大载荷下的压痕形貌进行观察。结果表明:在相同最大载荷和保载时间条件下,3种微焊点中Cu/SAC0705BiNi/Cu的蠕变深度和压痕尺寸均小于Cu/SAC305/Cu和Cu/SAC0705/Cu。在4种不同最大载荷下,与Cu/SAC0705/Cu微焊点体钎料相比,Cu/SAC0705BiNi/Cu微焊点体钎料的压入蠕变率分别降低了11.883%、16.059%、8.8157%和12.891%。Bi、Ni元素的添加,使Cu/SAC0705/Cu微焊点体钎料的蠕变应力指数提高了32.175%,有效提高了低银Cu/SAC0705/Cu微焊点体钎料的抗蠕变性能。  相似文献   

9.
压电驱动型微纳米压痕测试装置的设计与试验研究   总被引:1,自引:0,他引:1  
集成压电叠堆和柔性铰链设计一种微纳米压痕测试装置,分析测试装置的原理、组成和工作过程。该装置在压入方向上可实现0.05~30μm范围内线性位移输出,在无隔振和未做恒温处理的试验环境,位移传感器示数波动小于10 nm。提出一种新的机架柔度测试方法,利用该方法得到测试装置的机架柔度值为4.8 nm/mN。熔融石英材料压痕试验结果验证测试装置和机架柔度获取方法的可行性。对测试装置进行校准,利用校准后的测试装置对单晶硅片(100)晶面进行压痕试验,对应于最大压入载荷49.60 mN,当压入载荷卸载至18 mN时压痕曲线出现典型的pop-out现象,说明测试装置对于材料结构的细微变化具有较高的分析能力。根据Oliver-Pharr相关理论,计算得到单晶硅片(100)晶面在最大压入载荷为49.60 mN时的硬度为16.29 GPa,弹性模量为181.63 GPa。  相似文献   

10.
集成压电叠堆和柔性铰链设计一种微纳米压痕测试装置,分析测试装置的原理、组成和工作过程。该装置在压入方向上可实现0.05~30μm范围内线性位移输出,在无隔振和未做恒温处理的试验环境,位移传感器示数波动小于10 nm。提出一种新的机架柔度测试方法,利用该方法得到测试装置的机架柔度值为4.8 nm/mN。熔融石英材料压痕试验结果验证测试装置和机架柔度获取方法的可行性。对测试装置进行校准,利用校准后的测试装置对单晶硅片(100)晶面进行压痕试验,对应于最大压入载荷49.60 mN,当压入载荷卸载至18 mN时压痕曲线出现典型的pop-out现象,说明测试装置对于材料结构的细微变化具有较高的分析能力。根据Oliver-Pharr相关理论,计算得到单晶硅片(100)晶面在最大压入载荷为49.60 mN时的硬度为16.29 GPa,弹性模量为181.63 GPa。  相似文献   

11.
为了揭示磷酸二氢钾(KDP)晶体三倍频晶面微观弹塑性力学行为及加工性能,开展了纳米压痕研究。建立了KDP晶体三倍频晶面各向异性力学模型,基于光滑粒子流体动力学(SPH)方法对纳米压痕进行了数值仿真并完成了纳米压痕测试实验。实验结果表明:实验与仿真计算的载荷-压入深度关系曲线的相关系数为0.996 328,吻合度较高,验证了力学模型的正确性,得出KDP晶体三倍频晶面的屈服强度为240MPa。数值仿真结果显示:由于材料的各向异性,工件内部应力呈不规则圆弧状分布;载荷大小与等效应力影响深度呈近似线性递增关系;材料表面等效塑性应变分布形状与压头投影面几何形状相类似,存在复映效果。当载荷小于2mN时,各压头的残余应力深度差异性较小(小于0.2μm);随着载荷逐渐增大,这种差异不断扩大。得到的结果为实现KDP晶体三倍频晶面的高效低损伤加工提供了理论支撑。  相似文献   

12.
对TA2纯钛进行超声表面滚压加工,研究了其截面显微组织和残余应力分布;采用纳米压痕试验测定距表面不同距离处的载荷-压入深度曲线并反演得到应力-应变曲线,将该应力-应变关系作为材料属性,采用有限元方法模拟得到载荷-压入深度曲线,通过与试验曲线进行对比对反演方法进行验证,并且研究了初始屈服应力和应变硬化指数对载荷-压入深度曲线的影响.结果表明:试样表层形成晶粒尺寸逐渐增大的梯度结构,残余压应力随着距表面距离的增加先增大后减小;载荷-压入深度模拟曲线与试验曲线基本一致,最大压入深度的相对误差在8%以内,说明反演方法可靠;随着初始屈服应力和应变硬化指数增大,载荷-压入深度曲线加载段曲率增大,塑性功与总功之比减小,初始刚度变化不明显.  相似文献   

13.
单晶硅纳米力学性能的测试   总被引:1,自引:0,他引:1  
对材料纳米力学性能测试手段进行了研究,着重分析了纳米压痕技术的原理和方法.结合纳米压痕技术,采用尖端四面体Vickers型单晶金刚石压头对单晶硅(100)晶面进行了纳米压痕实验测试.实验发现,在载荷为1 000 mN时,晶体硅出现了明显的裂纹和脆性断裂;而在载荷低于80 mN的情况下,晶体硅则表现出延性特性.此外,在不同载荷条件下对晶体硅的硬度进行了实验测试,测试结果发现,不同载荷条件下晶体硅的硬度测量值存在较大的差异,认为导致这种差异的原因在于压痕区域晶体硅所受压力不同,使得晶体硅内部结构发生了改变,较为准确的单晶硅的硬度测量值为15.7 GPa.  相似文献   

14.
利用纳米压痕仪进行纳米尺度接触力学特性实验研究,通过金刚石探针与单晶硅试件接触作用,获得不同载荷、不同接触深度条件下的接触压入和脱离接触的位移-载荷曲线,并利用原子力显微镜对接触区域扫描,获得接触区域AFM三维形貌图。研究表明,在不同载荷条件下接触压入,随着载荷的增大,接触深度也随之增大;在不同深度条件下接触压入,随着接触深度的增大,接触作用力也随之增大。脱离接触的时候,接触区有弹性恢复,但有残余变形,接触区域表现出了塑性变形,压痕附近区域没有裂纹情况出现,载荷或接触深度越大,接触塑性变形越明显。此外,在不同载荷、不同接触深度条件下,接触区的压痕硬度和弹性模量相应有不同值,接触压痕硬度值和弹性模量值均有一定变化。  相似文献   

15.
以提高对产品材料硬度及其抗形变能力的测量效果,本研究首先分析了金属压痕仪的测量原理,发现影响其极限机械载荷控制的因素与压头形状与表面粗糙程度有关。因此,通过应力响应系数分析压头过渡圆角半径、过渡角度与极限载荷的关系。然后在加载平衡的约束下,以材料截面中心为加载中心获取极限机械载荷,再通过控制拉伸与弯曲载荷实现对压痕仪极限机械载荷的控制。试验分析表明:降低压头结构的应力集中系数能够提升极限机械载荷控制效果,且压头粗糙面值越大,越利于极限机械载荷控制;压痕深度及压入深度与极限破坏载荷呈正比,当拟合参数取值为1.0时,可确保极限机械载荷控制效果达到最佳;此外,该方法能够有效提升金属材料力学性能的测量精度,在拉伸-弯曲载荷作用下,确保金属材料各项力学性能接近极限值。  相似文献   

16.
中阶梯光栅铝膜的大压深纳米压痕试验   总被引:2,自引:0,他引:2  
为研究光栅铝膜在机械刻划深度范围内的弹塑性变形特征,通过纳米压痕仪的Berkovich压头对现有79 g/mm中阶梯光栅铝膜进行大压深连续纳米压痕试验测试。按10 s-10 s的加-卸载方式进行压深步0.5μm、最大压深5.0μm、每个压痕步重复6次的连续压痕试验,获得整个压深尺度范围内弹性模量、硬度、最大回弹量、等效回弹锥角和回弹系数随压深的变化规律。光栅镀铝膜层材料的弹性模量、硬度在浅表层体现出较强尺寸效应,同时在镀铬过渡层和玻璃基底综合效应的影响下出现"拐点"极值;残余压痕的最大回弹量随压深近似线性增加,但是相对压深的回弹量、等效回弹锥角和回弹系数均随压深减小,这表明光栅铝膜在机械刻划深度范围内的回弹性能受压入深度的影响较大。这对于认识现有中阶梯光栅镀铝膜层材料的力学性能并改进镀膜工艺具有重要意义。  相似文献   

17.
在对纳米压痕测试基本原理及性能特点进行分析研究的基础上,针对一种典型压电双晶片开展了压痕响应测试分析,测得了不同最大压入载荷条件下的载荷-压入深度关系曲线,得到了材料的硬度与最大压入载荷间的关系。本文对分析研究压电材料及其器件的力学性能具有借鉴意义。  相似文献   

18.
介绍了新型纳米压痕技术的基本测量原理,该技术利用加载-卸载过程中压痕对载荷和压入深度的敏感关系,测试材料的硬度和弹性模量等力学性能。由于该技术纳米级的压头位移和纳牛顿级的作用力,使之成为研究摩擦表面膜的有力工具,应用纳米压痕法对纳米铜摩擦表面膜进行了硬度和弹性模量的测试和分析。  相似文献   

19.
针对微晶玻璃超精密磨削加工不可避免的表面/亚表面损伤问题,通过微晶玻璃磨削试验研究500#、1 500#、2 000#和5 000#金刚石砂轮磨削微晶玻璃的表面形貌、表面/亚表面损伤特征及其材料去除机理,揭示微晶玻璃脆性域磨削和塑性域磨削的表面/亚表面损伤特征,提出依次采用500#金刚石砂轮粗磨和5 000#金刚石砂轮精磨的微晶玻璃高效低损伤磨削工艺。结果表明,500#和1 500#金刚石砂轮磨削表面的材料去除方式为脆性断裂去除,2 000#金刚石砂轮磨削表面的材料去除方式同时包括脆性断裂去除和塑性流动去除,5 000#金刚石砂轮磨削表面的材料去除方式为塑性流动去除;脆性域磨削微晶玻璃的表面损伤形式为凹坑、微裂纹、深划痕,亚表面损伤形式为微裂纹;塑性域磨削微晶玻璃的表面损伤形式为微磨痕,亚表面损伤形式为靠近磨削表面的材料的塑性流动。  相似文献   

20.
通过单次压痕试验与有限元模拟相结合的方法,结合反向分析方法与模拟退火粒子群算法,从获得的载荷-深度曲线加载部分提取材料的塑性参数,基于Ludwig硬化模型预测了不同金属材料的强度,并与单轴拉伸试验结果进行对比。结果表明:模拟得到的载荷-深度曲线与试验得到的几乎重合,二者的相对误差小于0.5%,说明模拟退火粒子群算法可有效地从压痕载荷-深度曲线中提取出金属材料的塑性参数;基于Ludwig硬化模型,利用反向分析方法从压痕载荷-深度曲线中提取的真应力-真塑性应变曲线不是唯一的,但从真应力-真塑性应变曲线计算得到的强度具有明显的收敛趋势;采用压痕试验得到不同金属材料的强度均接近于由拉伸试验得到的,屈服强度与抗拉强度的最大相对误差分别为5.9%,4.3%,说明采用压痕试验法可以准确地评价金属材料的强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号