首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用十六烷基三甲基溴化铵(CTAB)改性氮化硼(BN),以此微粒为导热填料制备了环氧树脂(EP)/改性BN导热绝缘复合材料。研究了改性BN含量对复合材料导热性能、电绝缘性能及热稳定性能的影响。结果表明:改性BN能够均匀分散于环氧树脂复合材料中;随着改性BN的加入,复合材料的热导率逐渐上升,体积电阻率略有下降,当改性BN的含量为14.6%时,复合材料的热导率达到0.62 W/(m·K),较纯环氧树脂的热导率提高了169.6%,且复合材料仍保持优异的绝缘性能;随着BN含量的增加,复合材料的热分解温度呈现先升高后降低的变化趋势,当BN的含量为10.2%时,复合材料失重10%时的热分解温度(T10)上升到最高值376.4℃,较纯环氧树脂提高了18℃。  相似文献   

2.
分别采用氮化硼(BN)、多巴胺改性BN(BN@PDA)、氮化硼与碳纳米管(CNTs)复配作为导热填料填充环氧树脂,制备了一系列导热复合材料。研究了填料种类、含量对复合材料导热性能、介电性能等的影响。结果表明:经多巴胺改性的BN微粒能均匀分散在环氧树脂体系中,当BN@PDA的质量分数为50%时,BN@PDA/EP复合材料的热导率达到1.232 W/(m·K),较纯环氧树脂的热导率提高了250%。在相同的BN@PDA含量下,采用BN@PDA/CNTs复配填料时可以制备得到高导热高介电的复合材料,热导率提高至2.147 W/(m·K),同时1 kHz下的介电常数提高至51.881,介质损耗因数仅为0.043。  相似文献   

3.
氮化硼/环氧树脂复合材料因其优异的导热、机械、电学性能成为高压电气设备中重要的功能材料。为此提出对填料进行氟化剥离处理以提升复合材料的绝缘性能。通过制备含改性氮化硼质量分数分别为1%、2%、4%、8%的环氧树脂复合材料,与未处理填料的氮化硼/环氧树脂复合材料进行对比,研究其在直流电场下表面电荷消散与闪络电压的特性。采用SEM、FTIR、AFM、EDS等手段研究填料改性前后的性质和材料表面闪络处的形貌和元素成分。结果显示:材料表面电荷的消散速度及闪络电压随填料质量分数的增加而提升;对氮化硼填料氟化剥离处理有助于促进复合材料的电荷消散,提高闪络电压。从电荷消散途径、氮化硼禁带宽度、材料表面陷阱效应方面对实验现象进行了解释,为复合材料的无机填料处理提供了一种新的改性方法。  相似文献   

4.
以端基为氨基、羧基和羟基的表面改性氮化硼(BN)和未经表面修饰的BN纳米片为填料,通过原位聚合法制备了改性BN/聚酰亚胺(PI)复合材料,研究了氨基改性BN(BN-NH2)、羧基改性BN(BN-COOH)、羟基改性BN(BNOH)和BN对不同温度下复合材料导热特性的影响。结果表明:复合材料的热扩散系数随着BN-NH2质量分数的增加而增大,随BN-COOH和BN-OH质量分数的增加先增大后减小,且均在质量分数为2%时达到最大值。在200℃时,BN-NH2/PI的热扩散系数在填料质量分数为5%时达到最大值,BN-COOH/PI和BN-OH/PI则都在填料质量分数为2%时热扩散系数达到最大值,其中BN-COOH/PI获得最高的热扩散系数。因此,氨基表面改性BN有利于BN/PI复合材料在高填充量下获得更高的热扩散系数,而要获得最高的热扩散系数,羧基改性BN则是最佳选择。  相似文献   

5.
环氧树脂广泛应用在电机绝缘领域,向树脂中添加微米氧化铝可以减缓绝缘老化的侵蚀,为了进一步提升氧化铝/环氧树脂复合材料电气性能,本文引入偶联剂协同低温等离子体复合改性方法对氧化铝填料进行表面处理。将偶联剂包覆改性后的微米氧化铝置于重复脉冲低温等离子体中分别进行0~9min表面改性处理,其次将氧化铝掺杂进环氧树脂中制备复合材料。观测氧化铝填料外表的形貌、官能团及结构变化,对复合材料局部放电起始电压进行测试分析。结果表明,偶联剂和低温等离子体复合改性能有效提升氧化铝填料表面活性官能团的含量,为氧化铝与树脂基体的紧密键合提供了基础,进而提升了氧化铝/环氧树脂复合材料的电气性能。在复合改性中等离子体处理时间为3min时,氧化铝填料表面含氧基团的含量相对于单一偶联剂改性增长了3.32%,表面偶联剂的接枝率提升了24.5%,复合材料的电气性能提升了7.9%。  相似文献   

6.
为了研究中频变压器用环氧树脂复合材料的导热和电气特性,本文选取高导热纳米氮化硼(BN)颗粒作为填料,利用盐酸多巴胺对其进行表面修饰,采用溶液法制备了环氧树脂/纳米BN复合材料试样(BN质量分数分别为1%、2%和5%),通过扫描电子显微镜对试样的微观形貌进行分析,测试了试样的热导率、体积电导率、中频击穿场强和表面电位衰减特性.结果表明:纳米BN的添加提高了环氧树脂的热导率;1 wt%和2 wt%纳米BN的添加降低了环氧树脂的电导率和载流子迁移率;随着电压频率的升高,试样的击穿场强降低;随着纳米BN浓度的增加,击穿场强呈现出先升高后降低的趋势;纳米BN能够缓解环氧树脂击穿场强随频率升高的影响,降低环氧树脂的表面电位衰减速度.上述结果表明,适量添加1 wt%和2 wt%的纳米BN能够提高中频变压器用环氧树脂复合材料的导热和电气性能.  相似文献   

7.
电气、电子装备中器件的微型化、高功率化发展使得散热成为关键,以氮化硼(boron nitride,BN)为填料制备的导热复合材料是改善这一问题的有效方式。为此在阐述BN结构特点的基础上,从单一填料处理包括BN的剥离以及BN表面改性、复合填料协同作用、导热网络的构建这3个角度出发,分析了提升BN改性聚合物材料导热性能的途径。最后,对当前BN改性聚合物导热复合材料研究存在的问题进行总结,并对导热复合材料未来发展方向做出展望,以期望实现有限空间内的高效散热。  相似文献   

8.
为研究氮化硼(BN)/环氧树脂复合材料的介电特性,在环氧树脂中分别添加不同质量分数的微米BN、未处理纳米BN和表面处理纳米BN制备BN/环氧树脂复合材料,并对其进行微观分析、介电频谱和介电温谱实验,研究BN质量分数、BN粒径和偶联剂表面处理对环氧树脂复合材料介电特性的影响。结果表明:复合材料的介电常数、介质损耗和电导率比纯环氧树脂有所降低;未处理纳米BN/环氧树脂复合材料和微米BN/环氧树脂复合材料的介电常数随BN质量分数的增加而减小;表面处理纳米BN/环氧树脂复合材料的介电常数随BN质量分数的增加而增大;纯环氧树脂和BN/环氧树脂复合材料的介电常数在10~110℃随温度升高呈上升趋势;纯环氧树脂和BN/环氧树脂复合材料的介质损耗在50~110℃随温度升高而增加,且增加幅度较大。  相似文献   

9.
将偶联剂改性的纳米BN添加到环氧树脂中,制备了环氧树脂/BN纳米复合材料,并研究了纳米BN含量对纳米复合材料热性能、力学性能及电性能的影响。结果表明:随着BN添加量的增加,复合材料的热导率提高,当BN添加量为15%时,热导率为0.301 W/(m.K),是纯环氧树脂热导率的1.394倍。同时复合材料的热稳定性有所提高,当添加量为10%时,热分解温度提高了6.88℃。随着BN添加量的增加,复合材料的冲击强度和介电强度呈先升高后降低的趋势,当BN含量分别为7%和3%时,冲击强度和介电强度达到最大值15.60kJ/m2和28.94 MV/m,分别是纯环氧树脂的1.324倍和1.43倍,表明纳米BN的加入可以提高环氧树脂的综合性能。  相似文献   

10.
针对环氧树脂绝缘型封闭母线温升较高,本文提出利用SiO_2对母线结构中导热性较差的环氧树脂进行改性,提高环氧树脂的导热性能。在此基础上分析了填料比例、粒径以及表面粗糙度对复合材料导热性能和电性能的影响。结果表明,5%的纳米SiO_2/环氧树脂复合材料具有最优的电性能和导热性能。利用ANSYS软件仿真母线温度场,仿真结果表明,纳米改性环氧树脂绝缘型封闭母线的温升得到降低。  相似文献   

11.
采用偶联剂对纳米BN颗粒进行表面处理,制备了经过表面处理的纳米BN/环氧树脂复合材料。对纳米/BN环氧树脂复合材料进行了微观形貌分析、击穿强度和空间电荷测试。结果表明:随着微米BN添加量的增加,微米BN/环氧树脂复合材料的击穿强度随之降低;随着纳米BN添加量的增加,纳米BN/环氧树脂复合材料的击穿强度先升高后降低。微、纳米BN的添加会降低直流高压电场下复合材料内的平均空间电荷密度。同时,偶联剂处理会降低纳米BN/环氧树脂复合材料在加压时的平均空间电荷密度,增加纳米BN/环氧树脂复合材料在短路时空间电荷的消散速率。  相似文献   

12.
肖萌  杜伯学 《低压电器》2013,(20):11-16
通过在环氧树脂基体中添加氮化硼(BN)颗粒以提高环氧树脂的热导率,研究了BN颗粒质量分数对脉冲电压下表面击穿试验中热导率以及放电量等的影响,得出了随着BN颗粒质量分数的增加热导率随之增加而放电量随之减小的趋势.表明,BN颗粒提高了环氧树脂的热导率,进而提高了环氧树脂复合材料的耐表面击穿性能.  相似文献   

13.
环氧树脂(EP)常用作高频变压器的主绝缘材料,因长期受高频重复电应力作用,导致表面积累的电荷密度增加,容易诱发绝缘失效。纳米改性是提升复合绝缘界面电荷消散特性的重要手段。该文采用多巴胺接枝的纳米氮化硼(h-BN)改性制备了环氧树脂复合材料,重点考察绝缘表面电荷的高频消散特性。受耗散时间、高频致热效应及深陷阱能级的影响,高频下的绝缘表面电荷不易消散,而引入多巴胺接枝的BN可有效提升环氧树脂复合绝缘的电荷消散速率。具体结果表明,掺杂质量分数为10%时,电荷消散速率达到最大值62.15%,相较于纯EP提高了19.41%,与此同时高频沿面闪络电压比纯EP提高了14.73%。其提升机理主要缘于两个方面:一是BN表面接枝的氨基增强了填料与基体的相容性,形成的三维交联网络拓宽了电荷消散路径;二是材料表层浅陷阱密度的提高,使得载流子易通过隧穿效应参与到电导过程,提高了载流子迁移率;此二者协同作用有效提高了表面电荷的高频消散速率。上述研究结果为高频变压器主绝缘系统优化设计提供了基础依据。  相似文献   

14.
环氧树脂(EP)是常用的电子封装材料,向环氧树脂中添加高导热氮化硼(BN)填料是提高环氧树脂复合材料热导率的有效方法之一。本文介绍了电子封装用环氧树脂基复合材料的导热机理,综述了近年来电子封装用环氧树脂/氮化硼复合材料的研究进展,最后展望了环氧树脂/氮化硼导热复合材料的发展前景。  相似文献   

15.
纳米SiO2填料与环氧树脂基体界面效应差,限制了复合材料电气性能提升.为此采用CF4/N2等离子体协同偶联剂改性纳米SiO2填料,改变其在基体中界面特性,制备了不同质量分数的纳米SiO2/环氧树脂复合材料.对复合材料的化学组分、表面形貌、闪络电压和击穿场强等进行测试.测试表明:氟元素以CF2为主要形式存在改性SiO2表...  相似文献   

16.
姚彤  边万聪  杨颖 《高电压技术》2021,47(1):251-259
环氧树脂(epoxy resin,EP)以其粘附力强、绝缘性能好等优点,在电气领域中得到广泛应用.但环氧树脂的低热导率限制其在器件中的使用,尤其在高频条件下.文中通过多巴胺改性微米氮化硼和纳米氧化铝,将制备的微纳米二元填料填充环氧树脂,研究环氧树脂复合材料的导热性能和电气绝缘性能.结果表明,质量分数22.5%BN和7....  相似文献   

17.
本文介绍了高导热环氧树脂基复合绝缘材料的导热机理和研究现状,提出了高填充率低黏度环氧树脂基复合材料的制备方法,重点探讨了填料表面改性处理及混配、液晶环氧应用和电场调控填料有序配置等关键技术问题,对比分析了高导热环氧树脂基复合材料与普通环氧树脂的导热性能。最后对金属基覆铜板用高导热环氧树脂基复合绝缘材料的发展方向和应用前景进行了展望。  相似文献   

18.
以纳米复合材料作为研究体系,选取典型的氮化硼(BN)/环氧树脂(EP)复合材料与钛酸钡(BT)/聚偏氟乙烯(PVDF)复合材料,通过有限元方法研究了纳米填料的体积分数、粒径大小和尺寸分布对复合材料导热性能和介电性能的影响,采用均匀场理论计算了复合材料的等效热导率和等效介电常数。结果表明:随着填料体积分数的提高,BN/EP和BT/PVDF的热导率和介电常数均提高;在相同体积分数、尺寸均匀分布的情况下,BN/EP和BT/PVDF的热导率和介电常数随着粒径增大而增大;在相同体积分数、同一粒径的情况下,BN/EP和BT/PVDF的热导率和介电常数随着粒径标准差增大而增大。因此,根据具体需求适当改变填料含量、粒径大小、粒径标准差是改善材料性能的有效方法。  相似文献   

19.
以尿素和六方氮化硼为原料通过球磨法制备了氨基化改性氮化硼纳米片(BNNS),并将改性前后的BNNS与环氧树脂混合制备BNNS/环氧复合材料,研究氨基化改性BNNS对环氧表面绝缘特性的影响.结果表明:通过球磨法成功将氨基接枝在氮化硼纳米片表面,改善了填料在环氧树脂复合材料中的分散性;相较于纯环氧材料,当改性BNNS的质量分数为0.5%时,BNNS/环氧复合材料的闪络电压提高了26.9%;此外,氨基化改性降低了材料表面的陷阱能级,加速了空间电荷消散速率;填充氨基化改性BNNS后复合材料的介电常数与介质损耗因数均有小幅提升,平衡空间电荷消散与极化弛豫两种效应对复合材料闪络电压的提升有积极作用.  相似文献   

20.
采用γ-氨丙基三乙氧基硅烷(KH-550)对硅微粉、气相SiO2进行表面改性后,分别使用单一的硅微粉、气相SiO2及复配的硅微粉/气相SiO2作为填料,对环氧树脂电子灌封胶进行改性,制得二元或三元体系的复合材料,并对其力学性能进行比较分析。结果表明:与采用单一填料改性的二元体系相比,采用硅微粉和气相SiO2组合填料改性的三元体系环氧复合材料的力学性能较好;当m(环氧树脂)∶m(硅微粉)∶m(气相SiO2)=100∶120∶3时,复合材料的弯曲强度达到最大值161.44MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号