首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Q345钢采用铝硅锰复合脱氧,在LF精炼过程中,钢—渣—夹杂物—耐火材料—合金—空气多元体系下夹杂物成分会发生转变。由于纯铁液脱氧热力学不能指导工业生产实践,且目前实际钢液的脱氧热力学没有系统化,需要进行深入研究。结合Factsage7. 0热力学计算,分析了Q345钢LF精炼脱氧、耐材侵蚀、钙处理等引起的钢液[Al]、[Si]、[Mg]、[Ca]含量变化对夹杂物成分的影响。转炉出钢采用铝硅锰复合脱氧,脱氧产物主要为Al2O3,随着钢中[Mg]含量上升,夹杂物由Al2O3转变为MgO·Al2O3尖晶石。钙处理会将夹杂物由MgO·Al2O3尖晶石转变为液态Ca-Al-Mg氧化物,但当喂钙过量时,夹杂物中CaO含量偏高,会影响夹杂物改性效果。利用Factsage7. 0热力学软件分析出的夹杂物成分与直接检测结果一致。  相似文献   

2.
赵晓磊  成功  杨华峰  刘丽娟  任英 《炼钢》2020,36(2):22-28
通过热力学软件FactSage 7.0和工业实践,对1 873 K下GCr15轴承钢脱氧过程中非金属夹杂物生成热力学进行研究。计算结果表明,当轴承钢中的w(Mg)0.4×10~(-6)时,钢中夹杂物由Al_2O_3转变为MgO·Al_2O_3;当钢中的w(Mg)10×10~(-6)时,钢中夹杂物主要为MgO。当轴承钢中w(Al)100×10~(-6)、w(Ca)0.1×10~(-6)时,钢中开始生成固态CaO·6Al_2O_3和CaO·2Al_2O_3夹杂物;当钢中w(Ca)2×10~(-6)时,钢中生成的夹杂物为液态钙铝酸盐;当钢中w(Ca)13×10~(-6)时,钢中开始生成固态CaO夹杂物。工业实践检测和热力学计算结果基本吻合,此外,研究发现纯铁液的脱氧热力学与轴承钢差异较大,因此,不能采用纯铁液的脱氧热力学指导轴承钢生产实践。  相似文献   

3.
利用FactSage软件对28MnCr5钢液和镁铝尖晶石夹杂物的平衡反应进行了分析,当w[Al]在0.02%~0.04%之间,w[Mg](0.39~0.42)×10-6的临界范围时开始生成镁铝尖晶石。计算发现:在现有28MnCr5钢精炼工艺条件下,钢液中会不可避免生成镁铝尖晶石夹杂物。当钢液w[Mg]8.5×10-6时,加入钙不能使其转变成低熔点液态夹杂物;而当钢液w[Mg]小于此值时,增加w[Ca]时,夹杂物按照"镁铝尖晶石→CaO-Al2O3-MgO系液态夹杂物→CaO"路径转变,钢液w[Ca]增加至3×10-6左右时均能将其转化为CaO-Al2O3-MgO系液态夹杂物。计算表明,精炼渣还原提供的[Ca]不能使28MnCr5钢中镁铝尖晶石夹杂物完全变性,须采用向钢液中喂钙线等手段来提高钢液中的钙含量。  相似文献   

4.
通过石油套管钢的工业试验及热力学分析,研究精炼过程中镁铝尖晶石的形成和改性机理。结果表明:当钢液中溶解铝分别为0.02%和0.05%时,溶解镁只要达到1.5×10-6和2.8×10-6,钢中便有镁铝尖晶石生成;钢液中溶解铝0.02%,镁含量为4×10-6~8×10-6时,钢中溶解钙含量只要分别达到0.21×10-6和0.42×10-6,钢液中的镁铝尖晶石便开始向液态钙铝酸盐转变;镁铝尖晶石比氧化铝更容易改性为液态夹杂物;钢液精炼过程中夹杂物受钢渣反应和钙处理的影响,按照Al2O3→MgO-Al2O3系夹杂物→Ca O-Al2O3-MgO或Ca O-Al2O3系液态复合夹杂物的过程演变。  相似文献   

5.
通过分析钢液-夹杂物之间的热力学平衡关系,考察了1 873K时410不锈钢中[Ca]、[Mg]和[Al]变化对410不锈钢夹杂物析出的影响,获得了低铝含量410不锈钢钢液析出低熔点夹杂物的钙含量、铝含量控制范围和抑制镁铝尖晶石生成的镁含量范围。即w([Al])在40×10-6时,控制w([Ca])在(2.6~38)×10-6,w([Mg])0.2×10-6;w([Al])在160×10-6时,控制w([Ca])200×10-6,w([Mg])7×10-6。  相似文献   

6.
为了减少和控制87Si钢中的夹杂物,论文采用热力学计算和试样分析检测的方法,对LD-LF-CC工艺生产87Si钢的夹杂物在各工序的种类和数量进行了系统地研究,对减少和控制87Si钢中的夹杂物有指导意义。结果表明:夹杂物在LF进站时,Al2O3-SiO2-MnO系为主,随着LF精炼的进行,渣中大量的[Ca]进入钢液,夹杂物成分逐渐向Al2O3-CaO-SiO2夹杂物转变。轧材中夹杂物中Al2O3稳定在33%,CaO达到40%,CaO/Al2O3为1.2。对于87Si钢,Al含量在0.006%左右,需要0.0075%的Mg就会有镁铝尖晶石析出,Ca含量在0.077%~1.204%时,Al2O3会转化为液态。  相似文献   

7.
为了降低钢的T[O]含量和生成较低熔点的非金属夹杂物以改善合金结构钢的抗疲劳破坏性能,在炉外精炼中采用了高碱度和高Al2O3含量的渣系.研究发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,在炉渣Al2O3含量低于25%时,T[O]随炉渣Al2O3含量减少而降低,而当炉渣Al2O3超过25%后,T[O]则随炉渣Al2O3含量增加而降低.精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO-Al2O3系夹杂物→CaO-MgO-Al2O3系夹杂物"顺序发生转变,其中MgO-Al2O3系夹杂物向CaO-MgO-Al2O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢,因而致使LF结束时钢中仍存在许多尚未转变的Mgo-Al2O3系夹杂物.钢液T[O]对夹杂物转变有显著影响,降低T[O]含量有利于生成较低熔点的CaO-MgO-Al2O3系夹杂物.  相似文献   

8.
为了研究非调质钢中非金属夹杂物的演变规律和生成条件,实现对钢中夹杂物的精准控制,揭示了非调质钢冶炼全过程非金属夹杂物的形貌和成分转变。初始钢中夹杂物主要为镁铝尖晶石夹杂物,随着冶炼反应的进行,钢中逐渐出现部分含有CaO和CaS的夹杂物,同时还伴有MnS析出相生成。系统地通过热力学计算了1 873 K下一元脱氧钢中Al、Ti、Mg和Ca与O的平衡关系,二元脱氧钢中Al-Mg、Al-Ti、Al-Ca和Al-Mg-Ca脱氧夹杂物的生成区域。可为非调质钢脱氧过程脱氧剂的加入、钢液中溶解氧含量的控制以及非调质钢中不同夹杂物的生成和控制提供理论指导。  相似文献   

9.
基于Fact Sage热力学软件的最小吉布斯自由能原理,研究了不同[Ca]、[Mg]、[Al]、[O]含量条件下GCr15轴承钢凝固过程中夹杂物的析出行为。结果表明:随着[Ca]含量由0.000 5%增加至0.004 5%,轴承钢中析出的夹杂物类型由Ca O·2Mg O·8Al_2O_3、Ca O·2Al_2O_3向2Ca O·Si O_2、Ca S转变,钢中夹杂物总质量分数由约0.004 5%增加到约0.009 4%。随着[Mg]含量从0.000 1%增加到0.000 9%,钢中析出的夹杂物由Ca O·Al_2O_3、2Ca O·Si O_2向Mg O·Al_2O_3和Ca S转变,钢中夹杂物总质量分数由约0.003 2%增加到约0.004 1%;[Al]含量由0.005%增加至0.05%时,钢中析出的夹杂物类型由2Ca O·Si O_2向Ca O·Al_2O_3、Ca O·2Al_2O_3转变,夹杂物总量由0.002 8%增加至0.003 3%,变化相对不明显;随着[O]含量由0.000 3%增加至0.002 1%,钢中析出的夹杂物类型由Ca S向Ca O·Al_2O_3、Ca O·2Al_2O_3转变,夹杂物析出量由0.002 4%增加到约0.005 1%。  相似文献   

10.
安会龙  任英  刘洋  储焰平  张彦辉 《炼钢》2020,36(3):55-61
揭示了弹簧钢全流程中非金属夹杂物的形貌和成分转变。初始钢中夹杂物主要为Al_2O_3-SiO_2-MnO-CaO,合金化后夹杂物转变为MgO-Al_2O_3。随着精炼的进行,夹杂物逐渐转变为Al_2O_3-MgO-SiO_2-CaO。最终铸坯中主要夹杂物为Al_2O_3-MgO-SiO_2-CaO,同时有硫化物和氮化物析出。系统地计算了1 873 K下一元脱氧钢中Al、Si、Mg和Ca与O的热力学平衡关系和二元脱氧钢中Al-Mg、Al-Si、Si-Mn和Al-Mg-Ca脱氧夹杂物的生成区域。可为弹簧钢脱氧过程脱氧剂的加入,钢液中溶解氧含量的控制,以及弹簧钢中不同夹杂物的生成和控制提供理论指导。  相似文献   

11.
采用模拟计算和试验相结合的方式研究了加Ti处理对钢中夹杂物的影响,探明了含Ti氧化物夹杂物的形成条件及演变过程。研究结果表明:在1 600℃温度下,当钢中[O]含量大于22×10-6时,才会生成含Ti氧化物夹杂物。同时,由于钢中[Als]的存在会抑制含Ti氧化物夹杂的生成,要求在冶炼过程中尽可能避免采用金属Al进行脱氧处理;当Ti处理前钢中[O]含量在80×10-6以内时,随着[O]含量的增加,夹杂物尺寸未见明显变化;在Ti处理结束后加入Ca粒可对夹杂物进行改性处理,促使MnS在夹杂物上形核,从而有利于促进晶内针状铁素体的形成。  相似文献   

12.
《炼钢》2015,(5)
为改善武钢CSP生产低碳铝镇静钢时钢水的可浇性,提高钢水洁净度,通过工业试验考察了不同钙处理条件下钢液成分及夹杂物变化情况,并结合热力学对钙处理效果进行了分析。试验结果表明,钙处理后,夹杂物主要为CaS含量较高的球状CaS-Al2O3-CaO复合夹杂,随着时间的延长,中包钢水中夹杂物转变为液态Al2O3-CaO夹杂和CaS含量较少的CaS-Al2O3-CaO复合夹杂。热力学分析表明,Al2O3夹杂物变性所需的Ca含量较低,钢中Al、S含量对液态夹杂生成有着重要影响;为较好的实现钙处理对夹杂物变性,应同时对钢中Ca、Al、S含量进行控制;且钙处理应保证中包钢水夹杂物为液态夹杂。  相似文献   

13.
马志飞  孙彦辉  曾亚南  艾西  刘瑞宁  刘泳 《钢铁》2013,48(11):37-42
 系统研究了国内某钢厂生产的中碳钢Q345B钙处理前后夹杂物类型的变化,从热力学上分析铝脱氧钢中Al2O3夹杂物变性机制及夹杂物中CaS合理控制的条件,确立了夹杂物变性的“液相窗口”模型。热力学计算表明,温度为1873K,w([Al])为0.016%时,Al2O3转变为液态钙铝酸盐需要使钢中w([Ca])为0.0017%~0.0102%。生产实践表明,钙喂入量在0.0014%~0.0017%时,钙处理可以将钢中高熔点Al2O3的夹杂物转化为低熔点的12CaO·7Al2O3和CaO·Al2O3夹杂物,MnS基本转化为CaS,且无单独CaS析出。  相似文献   

14.
黄宇  谢有  成国光 《中国冶金》2018,28(8):10-16
通过国内外23CrNi3Mo钎具钢的洁净度对比,找出在冶金环节上与国外钎具钢的差距,并对国外钎具钢中夹杂物的生成机理进行了理论热力学计算。结果表明,国外钎具钢的洁净度较高,易偏析元素砷、磷等含量远低于国内钎具钢;夹杂物的类型主要以单独的Mg Al O类夹杂物和Mg Al O外包裹MnS类夹杂物为主,夹杂物的尺寸主要为0~3 μm;纵截面上MnS夹杂物具有很明显的拉长现象,且具有很好的熔断效果,宽度为1 μm左右,纵横比为3~6。国内钎具钢中夹杂物主要为单独的Mg Al O类夹杂物和Mg Al O外包裹(Ca,Mn)S类夹杂物,尺寸以3~6 μm为主;纵截面上,单独的(Ca,Mn)S沿轧制方向几乎不变形。热力学计算表明,MnS类夹杂物的两次析出是导致Mg Al O类夹杂物的包裹率达到70%、复合类夹杂物尺寸较小的主要原因。  相似文献   

15.
通过工业试验对202不锈钢进行系统取样,分析试样中夹杂物的变化特征,结合热力学计算,研究了202不锈钢中非金属夹杂物的形成机理。在进行硅锰脱氧后,LF精炼过程中钢液内以球型Ca?Si?Mn?O夹杂物为主。对于硅锰脱氧钢,钢液中残余铝质量分数为1×10?5时,可以扩大Mn?Si?O相图的液相区,但铝质量分数超过3×10?5会导致钢中容易形成氧化铝夹杂物并减小液相区。在连铸坯中以Mn?Al?O类夹杂物为主,相较于LF精炼过程试样,连铸坯试样中夹杂物的MnO和Al2O3含量明显增加,CaO和SiO2含量明显减小,夹杂物个数则由LF出钢试样的5.5 mm?2增加到11.3 mm?2。结合热力学计算发现,凝固过程中会有Mn?Al?O夹杂物形成,这也使其成为连铸坯中主要的夹杂物类型。   相似文献   

16.
针对新兴铸管炼钢部HRB500钢水钙处理做了热力学计算和现场取样分析。热力学计算结果表明,只需要加入较少的钙,即可使Al2O3变性为CaO·Al2O3,当钢中[Al]=0.006%时,夹杂物变性为12CaO·7Al2O3需要[Ca]≥4.1×10-6。在钢中[Al]含量不变化的情况下,随着钢水温度的降低,钢中的[Ca]含量也随之下降,才能满足夹杂物的成分在12CaO·7Al2O3附近。取样分析结果表明,目前喂CaSi线不足,夹杂物变性不完全。  相似文献   

17.
运用热力学计算了氧化镁及其复合夹杂物在X80管线钢液中的析出条件,即1873 K时以管线钢酸溶铝目标含量0.025%计算,当0.000 8%≤[Mg]≤0.005 9%,钢中生成MgO·Al2O3夹杂物,当[Mg]>0.0059%,钢中将有MgO生成。[Ti]为0.015%时,[Mg]=0.001 4%可生成2MgO·TiO2复合夹杂,同时0.025%≤[Al]≤0.047%时生成A12O3·TiO2复合夹杂物。50kg真空感应炉熔炼的管线钢经SEM和EDS分析表明,镁处理钢中的夹杂物小于2μm占85%,2~5μm的占14.5%,5~10μm的夹杂物仅有0.5%。用微镁处理的管线钢的脱氧产物为2MgO·TiO2、MgO·Al2O3等,这些脱氧产物还会和硫化物、氮化物形成复合夹杂物。  相似文献   

18.
运用热力学计算了X120管线钢含钛夹杂物在钢液中的析出条件,以X120管线钢钛的目标成分ω(Ti)=0.015%计算,当ω(Al)=0.000 35%~0.003 30%时,生成Al2 O3·TiO2; ω(Al)>0.003 30%时,则有Al2O3生成;要生成纯的MgO夹杂,钢中ω(Mg)>1.62×1013;ω(Mg)=0.0008%就可以生成2MgO·TiO2复合夹杂;X120管线钢没有纯的MgO夹杂,X120管线钢中会生成2MgO·Ti2O3、MgO·Al2O3、SiO2、Al2O3、Ti2O3、MnO等脱氧产物,这些脱氧产物还会和硫化物一起形成复合夹杂物.对夹杂物扫描电镜的观察与热力学计算的结果一致.在扫描电镜下观察了含钛夹杂物对铁素体的诱导,表明X120管线钢中含钛夹杂具有很好的诱导铁素体形核能力.  相似文献   

19.
针对HP295钢,采用热力学计算预测了冶炼和凝固过程中夹杂物的组成,同时,用扫描电镜(SEM)及能谱仪(EDS)对夹杂物的形貌和成分进行分析.结果表明:采用硅锰脱氧时,钢液中形成的夹杂物主要为鳞石英(SiO2)、锰铝榴石(3MnO·Al2O3·3SiO2)、莫来石(3Al2O3·2SiO2)和刚玉(A1203)等4类,且随【Al】含量提高或[01含量降低,夹杂物逐渐从鳞石英为主向刚玉为主转变,[A1]〈1×10^-6时主要为鳞石英,a[O]〈3×10^-3时则以刚玉为主;凝固过程析出夹杂物的组成与[Al]、[O]含量有关,1550℃时,当n[O]〉115.6×10^-5及[A1]〈4.5×10^-6时析出鳞石英,当口【O】〈115.6×10^5及[A1]〈10.5×10^-6时析出莫来石,当[A1]〉10.5×10^-6时析出刚玉;1510℃时,当a[01〉75.2×10^-5及[Al]〈3.51×10^-6时析出鳞石英,a[O]〈75.2×10^-5及[A1]〈8.18×10^-6时析出莫来石,[A1]〉8.18×10^-6时析出刚玉;另外,当3钢中有[Ca]存在时,凝固时可能析出钙斜长石甚至假硅灰石,析出物的成分及数量与钙的活度有关.热力学计算预测结果与扫描电镜分析结果基本一致,表明该热力学计算方法是可行的.  相似文献   

20.
摘要:为了研究不同脱氧方式对高铝钢中非金属夹杂物的影响,采用高温试验和热力学计算相结合的方法,对比分析了先SiMn后Al和先Al后SiMn两种脱氧方式下高铝钢中夹杂物形貌、类型、数量和尺寸特征。结果显示:先加入SiMn后,生成大量液态球形的Mn-Si-Al-O系复合夹杂物,再加入Al后夹杂物演变为Al2O3,且夹杂物数量明显减少;采用先Al后SiMn脱氧方式时,高铝钢中夹杂物始终以Al2O3为主,夹杂物最终数量相对较低。2种脱氧方式钢中夹杂物平均等效圆直径和尺寸分布相差不大。此外,采用先SiMn后Al进行脱氧时,发现尺寸较小的AlN颗粒附着在Al2O3夹杂物表面形成Al2O3-AlN复合夹杂物。而采用先Al后SiMn脱氧方式时,高铝钢中发现单一AlN夹杂物和Al2O3-AlN复合夹杂物,AlN夹杂物的形成与钢水中的氧势和合金原料有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号