首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracardiac echocardiography (ICE) has been demonstrated to be an effective imaging modality for the guidance of several cardiac procedures, including radiofrequency ablation (RFA). However, assessing lesion size during the ablation with conventional ultrasound has been limited, as the associated changes within the B-mode images often are subtle. Acoustic radiation force impulse (ARFI) imaging is a promising modality to monitor RFAs as it is capable of visualizing variations in local stiffnesses within the myocardium. We demonstrate ARFI imaging with an intracardiac probe that creates higher quality images of the developing lesion. We evaluated the performance of an ICE probe with ARFI imaging in monitoring RFAs. The intracardiac probe was used to create high contrast, high resolution ARFI images of a tissue-mimicking phantom containing stiffer spherical inclusions. The probe also was used to examine an excised segment of an ovine right ventricle with a RFA-created surface lesion. Although the lesion was not visible in conventional B-mode images, the ARFI images were able to show the boundaries between the lesion and the surrounding tissue. ARFI imaging with an intracardiac probe then was used to monitor cardiac ablations in vivo. RFAs were performed within the right atrium of an ovine heart, and B-mode and ARFI imaging with the intracardiac probe was used to monitor the developing lesions. Although there was little indication of a developing lesion within the B-mode images, the corresponding ARFI images displayed regions around the ablation site that displaced less.  相似文献   

2.
Acoustic radiation force impulse (ARFI) imaging characterizes the mechanical properties of tissue by measuring displacement resulting from applied ultrasonic radiation force. In this paper, we describe the current status of ARFI imaging for lower-limb vascular applications and present results from both tissue-mimicking phantoms and in vivo experiments. Initial experiments were performed on vascular phantoms constructed with polyvinyl alcohol for basic evaluation of the modality. Multilayer vessels and vessels with compliant occlusions of varying plaque load were evaluated with ARFI imaging techniques. Phantom layers and plaque are well resolved in the ARFI images, with higher contrast than B-mode, demonstrating the ability of ARFI imaging to identify regions of different mechanical properties. Healthy human subjects and those with diagnosed lower-limb peripheral arterial disease were imaged. Proximal and distal vascular walls are well visualized in ARFI images, with higher mean contrast than corresponding B-mode images. ARFI images reveal information not observed by conventional ultrasound and lend confidence to the feasibility of using ARFI imaging during lower-limb vascular workup.  相似文献   

3.
Acoustic radiation force imaging (ARFI) has been suggested as a tool for remote palpation. In this study an MR‐ARFI sequence, based on echo‐planar‐imaging, is introduced, for remote semi‐quantitative assessment of local tissue stiffness. The focal zone of a high intensity focused ultrasound (HIFU) is positioned at the region of interest and a single HIFU burst is transmitted. The method then measures the entire time integral of the resulting displacement at the focal zone. Combining this measurement with the Kelvin–Voigt viscoelastic tissue model, a local stiffness index is obtained. The method was implemented on gel phantoms, ex‐vivo bovine brain and chicken liver specimens. The results have demonstrated the ability to evaluate the relative local stiffness within 600 ms and to distinguish between different tissues on the basis of their stiffness index. The method may potentially be used for remote palpation of suspicious regions for diagnostic purposes, or for providing a mechanical feedback during therapeutic procedures, such as thermal ablation.  相似文献   

4.
Radiation force-based techniques have been developed by several groups for imaging the mechanical properties of tissue. Acoustic Radiation Force Impulse (ARFI) imaging is one such method that uses commercially available scanners to generate localized radiation forces in tissue. The response of the tissue to the radiation force is determined using conventional B-mode imaging pulses to track micron-scale displacements in tissue. Current research in ARFI imaging is focused on producing real-time images of tissue displacements and related mechanical properties. Obstacles to producing a real-time ARFI imaging modality include data acquisition, processing power, data transfer rates, heating of the transducer, and patient safety concerns. We propose a parallel receive beamforming technique to reduce transducer heating and patient acoustic exposure, and to facilitate data acquisition for real-time ARFI imaging. Custom beam sequencing was used with a commercially available scanner to track tissue displacements with parallel-receive beamforming in tissue-mimicking phantoms. Using simulations, the effects of material properties on parallel tracking are observed. Transducer and tissue heating for parallel tracking are compared to standard ARFI beam sequencing. The effects of tracking beam position and size of the tracked region are also discussed in relation to the size and temporal response of the region of applied force, and the impact on ARFI image contrast and signal-to-noise ratio are quantified.  相似文献   

5.
A 1.5-D transducer array was proposed to improve acoustic radiation force impulse (ARFI) imaging signal-to-noise ratio (SNRARFI) and image contrast relative to a conventional 1-D array. To predict performance gains from the proposed 1.5-D transducer array, an analytical model for SNRARFI upper bound was derived. The analytical model and 1.5-D ARFI array were validated using a finite element modelbased numerical simulation framework. The analytical model demonstrated good agreement with numerical results (correlation coefficient = 0.995), and simulated lesion images yielded a significant (2.92 dB; p < 0.001) improvement in contrast-tonoise ratio when rendered using the 1.5-D ARFI array.  相似文献   

6.
Several laboratories are investigating the use of acoustic radiation force to image the mechanical properties of tissue. Acoustic Radiation Force Impulse (ARFI) imaging is one approach that uses brief, high-intensity, focused ultrasound pulses to generate radiation force in tissue. This radiation force generates tissue displacements that are tracked using conventional correlation-based ultrasound methods. The tissue response provides a mechanism to discern mechanical properties of the tissue. The acoustic energy that is absorbed by tissue generates radiation force and tissue heating. A finite element methods model of acoustic heating has been developed that models the thermal response of different tissues during short duration radiation force application. The beam sequences and focal configurations used during ARFI imaging are modeled herein; the results of these thermal models can be extended to the heating due to absorption associated with other radiation force-based imaging modalities. ARFI-induced thermal diffusivity patterns are functions of the transducer f-number, the tissue absorption, and the temporal and spatial spacing of adjacent ARFI interrogations. Cooling time constants are on the order of several seconds. Tissue displacement due to thermal expansion is negligible for ARFI imaging. Changes in sound speed due to temperature changes can be appreciable. These thermal models demonstrate that ARFI imaging of soft tissue is safe, although thermal response must be monitored when ARFI beam sequences are being developed.  相似文献   

7.
Time-delay estimators, such as normalized cross correlation and phase-shift estimation, form the computational basis for elastography, blood flow measurements, and acoustic radiation force impulse (ARFI) imaging. This paper examines the performance of these algorithms for small displacements (less than half the ultrasound pulse wavelength). The effects of noise, bandwidth, stationary echoes, kernel size, downsampling, interpolation, and quadrature demodulation on the accuracy of the time delay estimates are measured in terms of bias and jitter. Particular attention is given to the accuracy and resolution of the displacement measurements and to the computational efficiency of the algorithms. In most cases, Loupas' two-dimensional (2-D) autocorrelator performs as well as the gold standard, normalized cross correlation. However, Loupas' algorithm's calculation time is significantly faster, and it is particularly suited to operate on the signal data format most commonly used in ultrasound scanners. These results are used to implement a real-time ARFI imaging system using a commercial ultrasound scanner and a computer cluster. Images processed with the algorithms are examined in an ex vivo liver ablation study.  相似文献   

8.
We introduce a harmonic version of the short-lag spatial coherence (SLSC) imaging technique, called harmonic spatial coherence imaging (HSCI). The method is based on the coherence of the second-harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also obtained with HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however secondharmonic echoes are not necessarily immune to the effects of clutter. HSCI and SLSC imaging are less sensitive to clutter because clutter has low spatial coherence. HSCI shows favorable imaging characteristics such as improved contrast-to-noise ratio (CNR), improved speckle SNR, and better delineation of borders and other structures compared with fundamental and harmonic B-mode imaging. CNRs of up to 1.9 were obtained from in vivo imaging of human cardiac tissue with HSCI, compared with 0.6, 0.9, and 1.5 in fundamental B-mode, harmonic B-mode, and SLSC imaging, respectively. In vivo experiments in human liver tissue demonstrated SNRs of up to 3.4 for HSCI compared with 1.9 for harmonic B-mode. Nonlinear simulations of a heart chamber model were consistent with the in vivo experiments.  相似文献   

9.
Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson's ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue's dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers.  相似文献   

10.
用特定频率和功率的高强度聚焦超声(HIFU)照射离体猪肉组织,研究了焦点区域的B超图像变化与HIFU导致的组织损伤之间的关系,并研究了M超信号变化和温度的相关性。结果表明:逐渐增加HIFU照射次数,焦点区域组织变性,B超图像发生明显改变。靶区内灰度超过设定的阈值的区域面积增大,区域内灰度升高,两者均与照射次数成近似线性关系;模拟加热实验中M超信号也随温度升高而变化,其变化较B超更显著。与以往的方法相比,实验系统可以实时地检测到组织损伤的程度和范围,提供了一种新的可视化的HIFU治疗实时监测方法。  相似文献   

11.
An ultrasound (US), image-guided high-intensity focused ultrasound (HIFU) device was developed for noninvasive ablation of uterine fibroids. The HIFU device was an annular phased array, with a focal depth range of 30-60 mm, a natural focus of 50 mm, and a resonant frequency of 3 MHz. The in-house control software was developed to operate the HIFU electronics drive system for inducing tissue coagulation at different distances from the array. A novel imaging algorithm was developed to minimize the HIFU-induced noise in the US images. The device was able to produce lesions in bovine serum albumin-embedded polyacrylamide gels and excised pig liver. The lesions could be seen on the US images as hyperechoic regions. Depths ranging from 30 to 60 mm were sonicated at acoustic intensities of 4100 and 6100 W/cm2 for 15 s each, with the latter producing average lesion volumes at least 63% larger than the former. Tissue sonication patterns that began distal to the transducer produced longer lesions than those that began proximally. The variation in lesion dimensions indicates the possible development of HIFU protocols that increase HIFU throughput and shorten tumor treatment times.  相似文献   

12.
13.
General purpose computing on graphics processing units (GPUs) has been previously shown to speed up computationally intensive data processing and image reconstruction algorithms for computed tomography (CT), magnetic resonance (MR), and ultrasound images. Although some algorithms in ultrasound have been converted to GPU processing, many investigative ultrasound research systems still use serial processing on a single CPU. One such ultrasound modality is acoustic radiation force impulse (ARFI) imaging, which investigates the mechanical properties of soft tissue. Traditionally, the raw data are processed offline to estimate the displacement of the tissue after the application of radiation force. It is highly advantageous to process the data in real-time to assess their quality and make modifications during a study. In this paper, we present algorithms for efficient GPU parallel processing of two widely used tools in ultrasound: cubic spline interpolation and Loupas' two-dimensional autocorrelator for displacement estimation. It is shown that a commercially available graphics card can be used for these computations, achieving speed increases up to 40x compared with single CPU processing. Thus, we conclude that the GPU-based data processing approach facilitates real-time (i.e., <1 second) display of ARFI data and is a promising approach for ultrasonic research systems.  相似文献   

14.
A model using finite-element analysis (FEA) has been developed to calculate the temperature rise in tissue from intracardiac ultrasound ablation catheters and to predict if this temperature rise is adequate for producing a lesion in the tissue. In the model, acoustic fields are simulated with Field II, and heat transfer is modeled with an FEA program. To validate the model, we compare its results to experimental results from an integrated, real-time three-dimensional (3-D) ultrasound imaging and ultrasound ablation catheter. The ultrasound ablation transducer is a ring transmitting at 10 MHz capable of producing an acoustic intensity of 16 W/cm2. It was used to ablate four lesions in tissue, and temperature rise as a function of time was monitored by embedded thermocouples. The average absolute difference between final temperatures predicted by FEA and those measured is 1.95 +/- 0.72 degrees C. Additionally, model and experimental lesion size are in good agreement. The model then is used to design a new ultrasound catheter with a 7.5 MHz linear phased array for ablation. Eight designs are modeled, and acoustic intensity, temperature rise, and ablation ability are compared.  相似文献   

15.
Acoustic radiation force impulse (ARFI) imaging is a novel imaging modality in which pulses from a diagnostic ultrasound scanner are used to displace tissue and track its motion. The region displaced has lateral and elevational dimensions of similar scale to the ultrasound beams used to track the motion. Therefore, there is a range of tissue displacements present within the tracking beam, leading to decorrelation of the echo signal. Expressions are derived for the expected value of the displacement estimate and the cross-correlation at the expected displacement. Numerical simulations confirm the analytical model.  相似文献   

16.
A catheter device with integrated ultrasound imaging array and ultrasound ablation transducer is introduced. This device has been designed for use in interventional cardiac procedures in which the cardiac anatomy is first imaged using real-time three-dimensional (3-D) ultrasound, then ablated to treat arrhythmias. The imaging array includes 112 elements operating at 5.4 MHz arranged in a 2-D matrix. Individual elements have a bandwidth of 21% and an insertion loss of 80 dB. The array has an azimuth resolution of 12 degrees and an elevation resolution of 8.7 degrees. The ablation transducer is a concentric piezoelectric transducer PZT-4 ring (outside diameter (O.D.), 4.5 mm, inside diameter (I.D.), 3.1 mm) operating at 10 MHz that surrounds the imaging array. It can produce a spatial-peak, temporal-average intensity up to 16 W/cm2. The entire device fits into a 9 Fr lumen with a 14 Fr tip to accommodate the ablation ring. With this device we have imaged, in realtime 3-D, a variety of targets including wire phantoms, fixed sheep hearts, and fresh bovine tissue. The ablation ring has been used to heat tissue-mimicking rubber 14 degrees C, as well as create lesions in fresh bovine tissue.  相似文献   

17.
提出一种基于超声背向散射积分(IBS)参数估计的减影成像方法,用于检测高强度聚焦超声(HIFU)治疗过程中的组织损伤.在构建的HIFU/B超准实时治疗监控成像系统上,进行了离体猪肝组织实验.得到了不同组织深度下,IBS值随治疗时间的增加而变化的情况,以及不同治疗时间的IBS减影图像.比较了两种获得减影图像的方法,讨论了空化效应对IBS值的影响.此外还采用了一种双向彩色编码模式用以识别组织运动伪像.结果表明,IBS值能够较好地检测组织的损伤,还能一定程度地反映空化效应的情况,采用时间相邻的序列减影图像的叠加所获得的减影图像效果较好,双向彩色编码模式能够较有效地识别组织运动伪像.  相似文献   

18.
High-frame rate ultrasound imaging is necessary to track fast deformation in ultrasound elasticity imaging, but the image quality may be degraded. Previously, we investigated the performance of strain imaging using numerical models of conventional and ultrafast ultrasound imaging techniques. In this paper, we performed experimental studies to quantitatively evaluate the strain images and elasticity maps obtained using conventional and high frame rate ultrasound imaging methods. The experiments were carried out using point target and tissue mimicking phantoms. The experimental results were compared with the results of numerical simulation. Our experimental studies confirm that the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and axial/lateral resolution of the displacement and strain images acquired using high-frame rate ultrasound imaging are slightly lower but comparable with those obtained using conventional imaging. Furthermore, the quality of elasticity images also exhibits similar trends. Thus, high-frame rate ultrasound imaging can be used reliably for static elasticity imaging to capture the internal tissue motion if the frame rate is critical.  相似文献   

19.
High-frequency ultrasound (HFU, > 15 MHz) is an effective means of obtaining fine-resolution images of biological tissues for applications such as opthalmologic, dermatologic, and small animal imaging. HFU has two inherent drawbacks. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU can be used to image only a few millimeters deep into a tissue because attenuation increases with frequency. In this study, a five-element annular array was used in conjunction with a synthetic-focusing algorithm to extend the DOF. The annular array had an aperture of 10 mm, a focal length of 31 mm, and a center frequency of 17 MHz. To increase penetration depth, 8-micros, chirp-coded signals were designed, input into an arbitrary waveform generator, and used to excite each array element. After data acquisition, the received signals were linearly filtered to restore axial resolution and increase the SNR. To compare the chirpcoded imaging method with conventional impulse imaging in terms of resolution, a 25-microm diameter wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. The results demonstrated that chirp-coded excitation did not degrade axial or lateral resolution. A tissue-mimicking phantom containing 10-microm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex vivo ophthalmic images were formed and chirpcoded images showed features that were not visible in conventional impulse images.  相似文献   

20.
A method has been developed to quantitatively analyze sinoatrial nodes (SAN) using Doppler tissue images (DTI). Doppler tissue images of SAN are acquired using an intracardiac catheter via the superior vena cava in an in vivo experiment. A sequence of DTI images of a SAN is obtained, and a complete cycle of the SAN excitation is observed. The tissue acceleration of the SAN is extracted and quantitatively analyzed. The estimated time-acceleration curve of the SAN exhibits remarkable similarity to the electrocardiogram curve. This is the first report on such finding. The experimental results show that the tissue movement of the SAN correlates with electrical cardiac activities and closely associates with the different phases of the cardiac cycle. This method has great potential in characterizing the local cardiac activities through the study of the conduct pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号