首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用机理性严重事故最佳估算程序SCDAP/RELAP5/MOD3.2,以美国西屋公司Surry核电站为参考对象,建立了1个典型的3环路压水堆核电站的严重事故分析模型,分别对主回路冷段和热段发生25cm大破口失水事故(LBLOCA)导致的堆芯熔化事故进行研究分析。结果表明,压水堆发生大破口失水事故时,堆芯熔化进程较快,大量堆芯材料熔化并坍塌至下腔室,反应堆压力容器下封头失效较早,且主回路冷段破口比热段破口更为严重。  相似文献   

2.
采取系统分析程序耦合过渡一体化严重事故(SA)分析程序的方法,对严重事故模拟机的开发进行研究。该方法首先使用系统分析程序计算事故早期响应,当满足耦合条件时,系统程序停止计算,切换至严重事故程序计算模拟事故中晚期。为实现切换时参数平滑过渡,以全范围模拟机常用程序RELAP5和严重事故程序MAAP4为例,主要分析了两程序热工水力模型重叠部分的堆芯区域的物理模型,选择传递了堆芯节点的芯块温度、包壳温度和堆芯功率。基于通用百万千瓦级压水堆小破口失水事故(SBLOCA)模型,使用该方法计算和SA程序单独计算进行对比验证。结果表明,过渡参数的选取是正确的,该系统分析程序耦合过渡SA程序的方法不仅能成功平滑地过渡参数,还保证了后续计算的准确性。   相似文献   

3.
秦山核电厂SGTR事故及其处置研究   总被引:2,自引:0,他引:2  
用RELAPS/MOD2程序和MARCH3程序对秦山核电厂多种假想SGTR事故及其所致严重事故进行了计算,分析了主要事故序列的事故进程,估算了严重事故下的熔堆时序,探讨了一些有效的事故处置措施及其干预效果。  相似文献   

4.
严重事故是指发生堆芯严重损伤的事故,过程极其复杂且具有不确定性。利用系统分析程序MAAP4对压水堆核电站全厂断电严重事故现象进行定性分析,通过得到重要现象的时间节点来了解压力容器内的事故进程与安全壳内事故进程,同时概述事故缓解措施,方便理解严重事故整体过程。  相似文献   

5.
MCCI过程模型开发及验证   总被引:1,自引:1,他引:0  
概述了严重事故下堆芯熔融物与混凝土相互作用(MCCI)过程的机理性模型,并给出了大亚湾核电厂全厂断电及大破口叠加安注失效等典型初因事故导致的严重事故下的MCCI过程的计算分析结果,并与相同事故序列下的MELCOR计算结果进行对比。计算结果表明,所给出的严重事故下的MCCI过程模型正确合理,计算速度快,能满足在模拟机上应用的要求。  相似文献   

6.
核电站不同严重事故序列下的MCCI及其缓解措施计算分析   总被引:1,自引:0,他引:1  
高泉源 《核动力工程》2007,28(3):103-106
概述了MEDICS程序的主要机理和模型,介绍了利用MEDICS程序进行严重事故下堆芯熔融物与混凝土相互作用(MCCI)的计算方法,并给出了大亚湾核电站全厂断电、小破口失水事故、大破口失水事故等典型初因事故导致的严重事故下的MCCI及其缓解措施的计算分析结果.计算结果表明,在无缓解措施情况下,安全壳底板熔穿时间在10.08~13.4d范围内,H2的产生量在12760~13159kg范围内;顶部冷却是较好的MCCI缓解措施,能明显延长安全壳底板熔穿时间、降低H2和总不可凝气体释放量.  相似文献   

7.
根据某小型压水堆的特点和运行经验,筛选给出可能引起严重事故的始发事件清单,然后基于SCDAP/RELAP5程序建立了反应堆严重事故分析平台,模拟确认了反应堆严重事故的响应序列。以反应堆全部电源丧失事故为例,根据稳压器安全阀响应情况将事故细分为两类断电事故,并分别分析了反应堆系统的热工水力响应行为及特征参数与后果,为评估装置薄弱环节、严重事故管理导则的开发奠定了基础。  相似文献   

8.
严重事故现象非常复杂,对其进行的确定论分析中存在一定的不确定性。本研究基于严重事故系统性分析程序ASTEC,开展了严重事故产氢关键参数研究。首先基于ASTEC程序模型和严重事故产氢现象机理分析,初步确定严重事故产氢关键参数,采用拉丁超立方抽样方法开展关键参数的敏感性分析,并采用多元线性回归方法探讨关键参数与严重事故产氢计算结果的相关性,定量给出了严重事故产氢关键参数对产氢结果的影响情况。结果表明,锆包壳失效前可承受的最大蠕变、包壳破裂时裂缝轴向扩张等参数对严重事故堆内产氢的计算结果影响较小,而锆氧化模型以及锆氧化物、二氧化铀的熔化温度等参数对严重事故堆内产氢有较大的影响。在严重事故分析研究中,应对关键参数进行合理的取值。本研究成果可为严重事故产氢现象研究提供参考。  相似文献   

9.
为满足核电厂全范围模拟机对严重事故过程仿真的需求,自主开发了严重事故仿真软件SimSA,能模拟从设计基准事故到严重事故的主要事故过程,并能准确给出相关进程的计算结果。SimSA包含3大主要模块:热工水力模块(Therm)、堆芯行为模块(Core)以及安全壳行为模块(Cont)。其中,Therm与Core两个模块的耦合过程中采用了SCDAP/RELAP5相似的基于过程机理的耦合方法。本文结合SimSA软件的具体情况介绍了这种耦合方法的实现过程,并采用耦合后的程序对大破口叠加安注失效及全厂断电叠加辅助给水丧失两个典型初因事故导致的严重事故序列进行了计算,将计算结果与相同初始条件下MAAP4的计算结果进行对比分析。结果表明,SimSA中采用的这种耦合方式是成功的。  相似文献   

10.
压水堆核电厂自然循环对一回路卸压策略的影响   总被引:1,自引:0,他引:1  
以我国秦山二期核电厂为研究对象,使用SCDAP/RELAP5程序建立了核电厂的自然循环模型.选取高压溶堆严重事故(TMLB'事故)为基准事故序列,分析了高压熔堆严重事故中自然循环的机理现象.通过计算在有无自然循环情况下一回路卸压措施的实施情况,对比分析了自然循环对一回路卸压策略的影响.结果表明,自然循环能有效延缓一回路卸压的启动时间和整体事故进程,但对一回路卸压的效果影响较小.  相似文献   

11.
Integrated severe accident analysis codes are used to quantify the source terms of the representative sequences identified in PSA study. The characteristics of these source terms depend on the detail design of the plant and the accident scenario. A historical perspective of radioactive source term is provided. The grouping of radionuclides in different source terms or source term quantification tools based on TID-14844, NUREG-1465, and WASH-1400 is compared. The radionuclides release phenomena and models adopted in the integrated severe accident analysis codes of STCP and MAAP4 are described. In the present study, the severe accident source terms for risk quantification of Maanshan Nuclear Power Plant of Taiwan Power Company are quantified using MAAP 4.0.4 code. A methodology is developed to quantify the source terms of each source term category (STC) identified in the Level II PSA analysis of the plant. The characteristics of source terms obtained are compared with other source terms. The plant analyzed employs a Westinghouse designed 3-loop pressurized water reactor (PWR) with large dry containment.  相似文献   

12.
A new mechanistic code SFPR for modeling of single fuel rod behavior under various regimes of LWR reactor operation (normal and off-normal, including severe accidents) is under development at IBRAE. The code is designed by coupling of two stand-alone mechanistic codes MFPR (for modeling of irradiated UO2 fuel behavior and fission product release) and SVECHA/QUENCH, or S/Q (for modeling of Zr cladding thermo-mechanical and physico-chemical behavior). Both codes were initially designed for accident conditions (and for this reason, are rather mechanistic) and later extended to various normal operation conditions. On the base of thorough validation against various out-of-pile and in-pile experiments, development of an advanced fuel performance code for best estimate code calculations for both normal and off-normal LWR operation regimes is foreseen.  相似文献   

13.
SCDAP/RELAP5与MELCOR程序对堆芯损伤过程预测的比较   总被引:2,自引:0,他引:2  
付霄华 《核动力工程》2003,24(5):430-434
SCDAP/RELAP5与MELCOR程序是目前得到广泛使用的两个严重事故分析程序.它们在模拟堆芯溶化及压力容器下封头失效过程中采用了基于不同理论的计算模型。本文利用两个程序分别对秦山二期核电厂发生假想的全厂断电事故下的堆芯损伤过程进行预测.并对比分析了这2个严重事故分析程序的优点及相应的计算结果.  相似文献   

14.
In this paper, the strong influence of the clad failure criteria on the calculated scenario of bundle degradation was demonstrated on the basis of comparative analysis of Phebus FP and PBF-SFD tests using the SVECHA/QUENCH (S/Q) code. The main peculiarity of the proposed mechanistic criteria is that they are based on the actual geometry of degraded fuel rods and not on a constant, user-defined failure temperature. This allows better modelling concerning the formation of local molten pool(s) in the upper part of bundle and the timing of subsequent materials relocations from the local molten pool(s). In general, the mechanistic criteria developed allow one to reasonably calculate the bundle degradation progression in both tests. Therefore, it is recommended to use these new, mechanistic cladding failure criteria in the severe accident system codes as well.  相似文献   

15.
Several OECD countries still have great interest to analyze the TMI-2 accident. Thermal hydraulic best estimate codes and severe accident codes are used to calculate the TMI-2 analysis exercise defined by a CSNI task group. Fourteen organizations in nine OECD countries are participating in the exercise. Four thermal hydraulic best estimate codes and six severe accident codes are used. The Federal Republic of Germany (FRG) is using the thermal hydraulic code ATHLET developed in the GRS to calculate the TMI-2 analysis exercise. Lessons learned are concentrated on the assessment of ATHLET, show advantages of the two phase thermal hydraulic model used, and identify areas for further development. Results from ATHLET calculations are compared with results from other OECD-codes.  相似文献   

16.
In the PHARE project “Hydrogen Management for the VVER440/213” (HU2002/000-632-04-01), CFD (Computational Fluid Dynamics) calculations using GASFLOW, FLUENT and CFX were performed for the Paks NPP (Nuclear Power Plant), modelling a defined severe accident scenario which involves the release of hydrogen. The purpose of this work is to demonstrate that CFD codes can be used to model gas movement inside a containment during a severe accident. With growing experience in performing such analyses, the results encourage the use of CFD in assessing the risk of losing containment integrity as a result of hydrogen deflagrations. As an effective mitigation measure in such a situation, the implementation of catalytic recombiners is planned in the Paks NPP. In order to support these plans both unmitigated and recombiner-mitigated simulations were performed. These are described and selected results are compared. The codes CFX and FLUENT needed refinement to their models of wall and bulk steam condensation in order to be able to fully simulate the severe accident under consideration.Several CFD codes were used in parallel to model the same accident scenario in order to reduce uncertainties in the results.Previously it was considered impractical to use CFD codes to simulate a full containment subject to a severe accident extending over many hours. This was because of the expected prohibitive computing times and missing physical capabilities of the codes. This work demonstrates that, because of developments in the capabilities of CFD codes and improvements in computer power, these calculations have now become feasible.  相似文献   

17.
A good understanding of the mechanical behaviour of the reactor pressure vessel (RPV) lower head is necessary both for severe accident assessment and for the definition of appropriate accident mitigation strategies. Indeed, a well-characterized failure of the lower head leads to a better evaluation of the quantity and kinetics with which core material can escape into the containment. These are the initial conditions for several ex-vessel events such as direct heating of the containment or molten core-concrete interaction.In this context, the objectives of the joint on-going work of the WP10-2 group of SARNET are: (1) improvement of predictability of the time, mode and location of RPV failure; (2) development of adequate models with the ultimate aim of being included into integral codes; (3) interpretation/analysis of experiments with models/codes combined with sensitivity studies; and (4) better understanding of the breach opening process in order to better characterize the corium release into the containment.Different approaches are considered: a simplified but well predicting model recently implemented in the severe accident Astec and Icare-Cathare codes, and viscoplasticity models implemented in the Cast3m, Ansys and Code_Aster finite element codes. Several failure criteria are considered: stress criterion, strain criterion and damage evaluation (coupled way or post-evaluation).In this paper, the OLHF-1 experiment has been used to assess the models, to perform sensitivity studies and to evaluate failure criteria that could be applied in the case of reactors. All the partners performed 2D axisymmetric analyses, allowing the evaluation of time, mode and location of vessel failure. Nevertheless, CEA conducted further 3D calculations in order to study crack propagation and the corresponding results will be presented separately at the end of the paper. The numerical formulation of the different models used is given and a comparison of experimental and numerical results is presented. The paper also shows the progress made with the objective of defining failure criteria that can be used for reactor vessel applications.  相似文献   

18.
Many existing containments in the United States have been shown to accommodate credible severe accident loads. Future containments should be explicitly designed for severe accident loads to reduce the uncertainty associated with the response of containments to these low-probability events. This paper examines the experiences from the application of current structural design codes for concrete containments, ultimate pressure capacity evaluation of existing containments, and pressure fragility testing of scale model concrete containments to arrive at the directions for modification of national codes. Recommendations are provided to consider the severe accidents directly in the concrete containment design.  相似文献   

19.
The COLOSS project was a 3-year shared-cost action, which started in February 2000. The work-programme performed by 19 partners was shaped around complementary activities aimed at improving severe accident codes. Unresolved risk-relevant issues regarding H2 production, melt generation and the source term were studied through a large number of experiments such as (a) dissolution of fresh and high burn-up UO2 and MOX by molten Zircaloy, (b) simultaneous dissolution of UO2 and ZrO2, (c) oxidation of U–O–Zr mixtures, (d) degradation–oxidation of B4C control rods.Corresponding models were developed and implemented in severe accident computer codes. Upgraded codes were then used to apply results in plant calculations and evaluate their consequences on key severe accident sequences in different plants involving B4C control rods and in the TMI-2 accident.Significant results have been produced from separate-effects, semi-global and large-scale tests on COLOSS topics enabling the development and validation of models and the improvement of some severe accident codes. Break-throughs were achieved on some issues for which more data are needed for consolidation of the modelling in particular on burn-up effects on UO2 and MOX dissolution and oxidation of U–O–Zr and B4C–metal mixtures. There was experimental evidence that the oxidation of these mixtures can contribute significantly to the large H2 production observed during the reflooding of degraded cores under severe accident conditions.The plant calculation activity enabled (a) the assessment of codes to calculate core degradation with the identification of main uncertainties and needs for short-term developments and (b) the identification of safety implications of new results.Main results and recommendations for future R&D activities are summarized in this paper.  相似文献   

20.
New demands for acceptance of nuclear power require full deterministic evidence of nuclear power plants (NPP) safety. From this point of view, the role of precise deterministic analysis of NPP safety plays a very important role for both the existing and future generation of NPPs. Considering the current status of existing severe accident codes, one may conclude that their capabilities are quite limited and not sufficient to prove NPP safety. This conclusion is based on the experience of usage of these codes, analysis of models and experimental database supporting codes and used for their validation. At the same time, the modern level of development of computer techniques and numeric methods allows the use of equations based on first principles rather than correlation. The transition to physical modeling appears to be more effective in the cases of designing and validation of codes using both separate effect and integral tests, and allows predictive power of codes to be increased and the range of uncertainties to be reduced. Moreover, physical modeling allows critical points of models and codes to be understood, and permits the planning of integral tests to resolve severe accident and accident management issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号