首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerol, a by-product of biodiesel production, is a potential substrate for producing electricity and value-added products in bioelectrochemical systems. Here, we demonstrate a strategy to establish a highly specific energy-producing biofilm from glycerol in a microbial fuel cell (MFC). The MFC fed with 1 g L?1 glycerol achieved maximum voltage, power density, and current of 0.4 V, 152 mW m?2, and 19.0 mA m?2, respectively, operating at a resistance of 1000 Ω. These values were much higher than the values previously described for the same glycerol concentration. High-throughput sequencing demonstrated that substituting acetate for glycerol diminished the anodic microbial diversity. In addition, glycerol shifted the microbial community composition from electroactive bacteria genera such as Delftia, Advenella, Thauera, Stenotrophomonas, and Dysgonomonas to bacteria with dual functions of electricity generation and 1,3-propanediol formation, including Citrobacter, Pseudomonas, and Klebsiella. Thus, establishing this biofilm opens the possibility of recovering energy and obtaining an added-value product from glycerol.  相似文献   

2.
Microbial fuel cells (MFCs) provide new opportunities for energy generation through conversion of organic matter to electricity by electricity-generating bacteria. In this study, Shewanella sp. strain HN-41 was described as an exoelectrogen that had the ability of extracellular electron transfer in MFCs fed with lactate or glucose. The maximum power density produced by the strain HN-41 in lactate- and glucose-fed single-chamber MFCs reached 71.6 and 18.2 mW m−2, respectively. The strain showed strong capability to reduce Fe(III) with lactate or glucose as electron donor during the initial incubation period, and secreted flavin mononucleotide (FMN), riboflavin, and traces of flavin adenine dinucleotide in MFCs. Addition of riboflavin and FMN as electron mediators contributed to 2–5 folds increase in power density. These findings on the ability of Shewanella sp. HN-41 to couple oxidation of glucose contributed to the expansion of our knowledge on utilization of carbon source by Shewanella sp.  相似文献   

3.
The increase in the global energy demand every year and the over-consumption of nonrenewable sources of energy has led to the identification and use of renewable and cost effective sources of energy. In this context, wastewater, which contains high levels of easily degradable organic material, has gained importance as a source of electricity generation using a microbial fuel cell.A microbial fuel cell comprising of Pseudomonas sp., mediator, and potassium ferricyanide as the oxidizing agent was developed for generation of electricity using wastewater, as substrate, obtained from wastewater treatment plant. The cells were connected in series with the anodic and cathodic solutions being introduced in batch and continuous modes. A maximum open-circuit potential of 2.2 V was obtained with the anode in batch-fed and cathode in continuous mode of operation. Methylene blue, when used as the mediator was found to produce a higher output from the cell when compared to neutral red. The maximum power output and current density obtained were 979 μW/m2 and 1.15 mA/m2 respectively. A 10% reduction in COD was observed when the microbial fuel cell was operated using the wastewater as the substrate.  相似文献   

4.
To investigate the effects of external resistance on the biofilm formation and electricity generation of microbial fuel cells (MFCs), active biomass, the content of extracellular polymeric substances (EPS) and the morphology and structure of the biofilms developed at 10, 50, 250 and 1000 Ω are characterized. It is demonstrated that the structure of biofilm plays a crucial role in the maximum power density and sustainable current generation of MFCs. The results show that the maximum power density of the MFCs increases from 0.93 ± 0.02 W m−2 to 2.61 ± 0.18 W m−2 when the external resistance decreases from 1000 to 50 Ω. However, on further decreasing the external resistance to 10 Ω, the maximum power density decreased to 1.25 ± 0.01 W m−2 because of a less active biomass and higher EPS content in the biofilm. Additionally, the 10 Ω MFC shows a highest maximum sustainable current of 8.49 ± 0.19 A m−2. This result can be attributed to the existence of void spaces beneficial for proton and buffer transport within the anode biofilm, which maintains a suitable microenvironment for electrochemically active microorganisms.  相似文献   

5.
Microbial fuel cells (MFCs) for organic waste and wastewater treatment represent innovative technologies for pollution control and energy generation. The research reported here considers the influence of reactor configurations designed to mitigate the impact of oxygen transport on electricity generation by a baffle-chamber membraneless MFC. The reactor was constructed to reduce mixing in the vicinity of the cathode and facilitate thick (>1 mm) biofilm formation on the cathode by adding anaerobic biomass/sludge (4330 ± 410 mg COD L−1), resulting in an overall coulombic efficiency of more than 30% at glucose concentrations ranging from 96 to 960 mg COD L−1, compared to previously reported efficiencies <10% in a completely mixed membraneless MFC. Efficiencies in the absence of anaerobic sludge dropped to 21.2 ± 3.7%, suggesting that the importance of pH buffering provided by the biomass in improving electron transport to the anode. However, the anaerobic sludge itself provided very limited power (approximately 0.3 mW m−2) and power generation was primarily associated with glucose degradation (e.g., 129 ± 15 mW m−2).  相似文献   

6.
Direct generation of electricity from a mixture of carbon sources was examined using single chamber mediator-less air cathode microbial fuel cells (MFCs) at sub-ambient temperatures. Electricity was directly generated from a carbon source mixture of d-glucose, d-galactose, d-xylose, d-glucuronic acid and sodium acetate at 30 °C and <20 °C (down to 4 °C). Anodic biofilms enriched at different temperatures using carbon source mixtures were examined using epi-fluorescent, scanning electron microscopy, and cyclic voltammetry for electrochemical evaluation. The maximum power density obtained at different temperatures ranged from 486 ± 68 mW m−2 to 602 ± 38 mW m−2 at current density range of 0.31 mA cm−2 to 0.41 mA cm−2 (14 °C and 30 °C, respectively). Coulombic efficiency increased with decreasing temperature, and ranged from 24 ± 3 to 38 ± 1% (20 °C and 4 °C, respectively). Chemical oxygen demand (COD) removal was over 68% for all carbon sources tested. Our results demonstrate adaptation, by gradual increase of cold-stress, to electricity production in MFCs at sub-ambient temperatures.  相似文献   

7.
The microbial fuel cell of Escherichia coli can convert microorganism biochemistry energy into electrical energy. To realize the influence of the growth curve phase with respect to different culture times on electricity performance, three kinds of E. coli (BCRC No. 10322, 10675, 51534) are selected, and it is both required and important to improve the performance of the microbial fuel cell (MFC). Results show that the BCRC No. 51534 of E. coli would be a better choice because a larger open-circuit voltage of 0.88 V and a limiting current of 10.1 mA possessed by it would result in an excellent power density of 547 mW/m2. In addition, the selection of culture timing set as at the middle of the logarithmic phase and phase transition from logarithmic to stationary is suggested because the growth curve is suitable for electricity generation of the MFC. These observations would be useful for the improvement of the MFC.  相似文献   

8.
In the present work, the wild type Klebsiella variicola was investigated in double chamber microbial fuel cell (MFC) using palm oil mill effluent as substrate which achieved high power density (4.5 W/m3) and coulombic efficiency (63%) while maintaining the moderate chemical oxygen demand (COD) removal efficiency (58%). The effect of biofilm formation on power generation over time was also evaluated and found that an effective biofilm with the discrete distribution of single layer microorganisms can produce high power corresponding to low charge transfer resistance. The growth of biofilm in multilayers consisting of outnumbered dead cells in the vicinity of the electrode surface caused the polarization resistance and diffusion resistance resulting in a sharp drop in the current generation. The removal of multilayer biofilm from the anode surface positively influenced the cell performance which led to a rapid increase in current generation and thus revealed that effective biofilm predominated by live cells can be an emergent factor for achieving maximum performance in MFC.  相似文献   

9.
Considering the promising application of microbial fuel cells (MFCs) in the wastewater treatment, the inherent solid particles in the wastewater may affect the MFC performance. In this paper, the effect of inert particle concentration on the operation of MFCs is investigated by adding silicon dioxide (SiO2) particles into the anolyte. The results show that the existing SiO2 particles in the anolyte result in a decreased active biomass and a reduced electrochemical activity of the biofilm. The anode ohmic resistance is almost the same for MFCs with various SiO2 particle concentrations in the anolyte, while an increase in the charge transfer resistance is observed. A small amount of inert particles have little influence on the MFC. However, when the MFC is operated with the anolyte containing more than 500 mg L−1 SiO2 particles, the performance decreases significantly due to the low electrochemical activity and high internal resistance of the anode.  相似文献   

10.
Microfiltration membrane, a potential alternative for traditional proton exchange membrane (PEM) due to its strong ability of proton transfer, cost-effectiveness, sustainability and high anti-pollution capability in microbial fuel cell (MFC). In this study, a novel MFC using bilayer microfiltration membrane as separator, inoculated sludge as biocatalyst and P-nitroaniline (PNA) as electron donor was successfully constructed to evaluate its performance. Furthermore, we also investigated the effects of initial PNA concentration, co-substrate (acetate) and cultivated microorganisms on MFC performance. Results showed that the maximum power density of 4.43, 3.05, 2.62 and 2.18 mW m?2 was acquired with 50, 100, 150 and 300 mg L?1 of PNA as substrate, respectively. However, with the addition of 500 mg L?1 of acetate into reaction system contained 100 mg L?1 of PNA, the higher power production of 6.24 mW m?2 was obtained, which was 2.05 times higher than that using 100 mg L?1 of PNA as the sole substrate. Meanwhile, the MFC working on cultivated microorganisms displayed a maximal power density of 7.32 mW m?2 and a maximum PNA degradation efficiency of 54.75%. And after an electricity production cycle, the number of microbes in the anode chamber significantly increased. This study provides a promising technology for bioelectricity generation by biodegrading biorefractory pollutants in wastewater.  相似文献   

11.
The aim of this study was to improve the efficiency of traditional proton exchange membranes by replacement using ceramic membranes with microalgae cathodes under various magnetic fields (MFs) of 100–300 mT in a ceramic microbial fuel cell (CMFC). The experimental results showed that the power generation can be enhanced by 61% when implementing a 200 mT MF. The application of a higher MF intensity, up to 200 mT, increased the electric charge generation yet decreased it with a higher MF value. Additionally, the MF had the ability to improve the power density of the CMFC, and a maximum power density of 35.9 mW m?2 and maximum current density of 158.7 mA m?2 were achieved with the 200 mT MF. Moreover, biocathode maintains a stable pH value that obtained more microalgae biomass by 200 mT MF stimulation. Further work will be focused on optimizing the appropriate MF intensity along with the capacity of carbon dioxide (CO2) absorption by microalgae in CMFC.  相似文献   

12.
13.
The ability of electron transfer from microbe cell to anode electrode plays a key role in microbial fuel cell (MFC). This study explores a new approach to improve the MFC performance and electron transfer rate through addition of Tween 80. Results demonstrate that, for an air-cathode MFC operating on 1 g L−1 glucose, when the addition of Tween 80 increases from 0 to 80 mg L−1, the maximum power density increases from 21.5 to 187 W m−3 (0.6-5.2 W m−2), the corresponding current density increases from 1.8 to 17 A m−2, and the resistance of MFC decreases from 27.0 to 5.7 Ω. Electrochemical impedance spectroscopy (EIS) analysis suggests that the improvement of overall performance of the MFC can be attributed to the addition of Tween 80. The high power density achieved here may be due to the increase of permeability of cell membranes by addition of Tween 80, which reduces the electron transfer resistance through the cell membrane and increases the electron transfer rate and number, consequently enhances the current and power output. A promising way of utilizing surfactant to improve energy generation of MFC is demonstrated.  相似文献   

14.
Production of sustainable and clean energy through oxidation of biodegradable materials was carried out in a novel stack of microbial fuel cells (MFCs). Saccharomyces cerevisiae as an active biocatalyst was used for power generation. The novel stack of MFCs consist of four units was fabricated and operated in continuous mode. Pure glucose as substrate was used with concentration of 30 g l−1 along with 200 μmol l−1 of natural red (NR) as a mediator in the anode and 400 μmol l−1 of potassium permanganate as oxidizing agent in the cathode. Polarimetry technique was employed to analyze the single cell as well as stack electrical performance. Performance of the MFCs stack was evaluated with respect to amount of electricity generation. Maximum current and power generation in the stack of MFC were 6447 mA.m−2 and 2003 mW.m−2, respectively. Columbic efficiency of 22 percent was achieved at parallel connection. At the end of process, image of the outer surface of graphite electrode was taken by Atomic Force Microscope at magnification of 5000. The high electrical performance of MFCs was attributed to the uniform growth of microorganism on the graphite surface which was confirmed by the obtained images.  相似文献   

15.
The effects of Pseudomonas aeruginosa, pyocyanin, and influent dissolved oxygen (DO) on the electricity generation in a baffled stacking microbial fuel cell (MFC) treating high strength molasses wastewater were investigated. The result shows that the influent chemical oxygen demand (COD) of 500–1000 mg l−1 had the optimal substrate-energy conversion rate. The addition of a low density of P. aeruginosa (8.2 mg l−1) or P. aeruginosa with pyocyanin improved the COD removal and power generation. This improvement could be attributed to the enhancement of electron transfer with the help of redox mediators. Influent DO at a concentration of up to 1.22 mg l−1 did not inhibit the electricity generation. Large proportions of COD, organic-N and total-N were removed by the MFC. The MFC effluent was highly biodegradable. Denaturing gradient gel electrophoresis analysis shows that the added pyocyanin resided in the MFC for up to 14 days. An analysis of anode voltage reveals that microbial proton transport to the cathode was importantly responsible for the internal resistance.  相似文献   

16.
The aim of this study was to evaluate the electrical generating characteristics of a double-chamber microbial fuel cell with pure culture of Enterobacter cloacae as a function of pH variation of its microenvironment. The performance was analyzed over 5 batch cycles (around 16-21 days) with community wastewater by adjusting the pH between 6.5 and 9.5. Operations under pH 6.5 (0.40 mA) and 7.4 (0.42 mA) showed highly effective performance with respect to maximum current generation and maximum power density corresponding to pH 8.5 (0.38 mA) and 9.5 (0.27 mA). This better performance could be attributed to the low internal resistance under the low pH microenvironment. Short experiments conducted for 60 min with different external resistances to calculate maximum current and internal resistance were remarkably shown to increase current and decrease internal resistance with respect to pH 6.5 and 7.4. Maximum power density obtained from the polarization curve was observed to follow the same behavior as current generation with a maximum of 0.0042 mW/cm2 for pH 7.4. COD removal efficiencies increased as a function of pH, and maximum amounted to pH 9.5 respectively, due to long operating time. Coulombic efficiency attained different trend with a maximum of 3.4% at pH 6.5. Low pH of 6.5 and 7.4 were associated with dominant electrochemical activity, which was proved by cyclic voltammetry. These results demonstrate the importance of pH environment in the biocurrent generation with wastewater containing E. cloacae.  相似文献   

17.
Microbial fuel cells (MFC) are systems that enable biochemical activities of bacteria to generate the electricity. These systems are of great interest because of their designs that enable biological activity in organic wastes to be transformed into direct electrical energy. In order to increase the commercial usage of MFCs, it is necessary to increase the power output of the system. So as to improve MFC performance, used material selection, the pH value of the used bacterial medium and the choice of the appropriate substrate are very important. In this study, oxidation bacteria Thiobacillus ferrooxidans on the cathode and mixed culture bacteria on the anode of MFC were used. Different anode and cathode pH values were examined in MFC. Best open circuit potential result (0.8 V) was obtained at anode pH 8 and cathode pH 2 conditions. In addition, three different substrates had been used in the anode. In the conditions of acetate the most stable and high valued curve was obtained. The open circuit potential had reached 0.726 V, and power density had reached 0.88 mW/cm2.  相似文献   

18.
Two flow patterns (plug flow (PF) and complete mixing (CM)) of microbial fuel cells (MFCs) with multiple anodes–cathodes were compared in continuous flow mode for wastewater treatment and power generation. The results indicated that PF-MFCs had higher power generation and columbic efficiency (CE) than CM-MFCs, and the power generation varied along with the flow pathway in the PF-MFCs. The gradient of substrate concentrations along the PF-MFCs was the driving force for the power generation. In contrast, the CM-MFCs had higher wastewater removal efficiency than PF-MFCs, but had lower power conversion efficiency and power generation. This work demonstrated that MFC configuration is a key factor for enhancing power generation and wastewater treatment.  相似文献   

19.
The main purpose of this study is the characteristic and nature of current generation with a pure culture of single cell in a sediment microbial fuel cell. A sediment microbial fuel cell with an air-cathode system was studied for a prolonged period of time. The current maintained a steady increase throughout the entire time period and reached to its peak of 1.82 μA with power density of 29,024.65 μW/cm2 at day 35. Water parameters such as salinity and pH were observed throughout the entire time period for better understanding. Operation of water parameter had been done after stabilization of current output for every measurement. The electron transfer pathway was assessed by cyclic voltammetry study. A low current density was observed due to profound internal resistance (141 Ω), and the reason for which was ohmic losses. A linear relationship was observed between current density and power density. Phylogenetic analysis was performed with 16S rRNA to identify the studied organism.  相似文献   

20.
The ternary component NiCoAl-layered double hydroxide (NiCoAl-LDH) and carbon nanotube (CNT) nano-composite (CNT/NiCoAl-LDH) were successfully prepared by a simple hydrothermal method. The NiCoAl-LDH nanosheets were effectively and uniformly grown on CNTs, forming a cross-linked conductive network structure, and stainless steel (SS) mesh was used as the base to load CNT/NiCoAl-LDH for microbial fuel cell (MFC) cathode. X-ray diffraction (XRD) results presented that the CNT/NiCoAl-LDH hybrid exhibited the (003), (006), (012), (015), (018), (110) and (113) crystal planes of hydrotalcite reflection. The surface functional groups C-O, C=O, C-H, C-N and M-O of the hybrid were confirmed. The cross-linked network structure of the hybrid was observed and the content and proportion of each element of the hybrid were found. CNT/NiCoAl-LDH showed excellent catalytic oxygen reduction reaction (ORR) ability by cyclic voltammetry (CV) and linear voltammetry (LSV) due to its abundant electrochemical active sites and excellent conductivity. The maximum output voltage of CNT/NiCoAl-LDH catalyst as MFC cathode was 450 mV, the maximum power density was 433.5 ± 14.8 mW/m2, and the maximum voltage stabilization time was 7–8 d. The results indicated that the CNT/NiCoAl-LDH hybrid was full potential as a high-performance, low-cost MFC cathode catalyst in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号