首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the involvement of free radicals in the development of endothelial dysfunction under pathological conditions, like diabetes and hypercholesterolemia, has been proposed frequently, there is limited knowledge as to how superoxide anions (O2-) might affect endothelial signal transduction. In this study, we investigated the effects of preincubation with the O2(-)-generating system xanthine oxidase/hypoxanthine (XO/HX) on mechanisms for Ca2+ signaling in cultured porcine aortic endothelial cells. Incubation of cells with XO/HX yielded increased intracellular Ca2+ release and capacitative Ca2+ entry in response to bradykinin and ATP in a time- and concentration-dependent manner. This effect was prevented by superoxide dismutase but not by the tyrosine kinase inhibitor tyrphostin A48. In addition, capacitative Ca2+ entry induced by the receptor-independent stimulus 2,5-di-(tert-butyl)-1,4-benzohydroquinone or thapsigargin was enhanced in O2(-)-exposed cells (+38% and +32%, respectively). Increased Ca2+ release in response to bradykinin in XO/HX-pretreated cells might be due to enhanced formation of inositol-1,4,5-trisphosphate (+140%). Exposure to XO/HX also affected other signal transduction mechanisms involved in endothelial Ca2+ signaling, such as microsomal cytochrome P450 epoxygenase and membrane hyperpolarization to Ca2+ store depletion with thapsigargin (+103% and +48%, respectively) and tyrosine kinase activity (+97%). A comparison of bradykinin-initiated intracellular Ca2+ release and thapsigargin-induced hyperpolarization with membrane viscosity modulated by XO/HX (decrease in viscosity) or cholesterol (increase in viscosity) reflected a negative correlation between bradykinin-initiated Ca2+ release and membrane viscosity. Because intracellular Ca2+ is a main regulator of endothelial vascular function, our data suggest that O2- anions are involved in regulation of the vascular endothelium.  相似文献   

2.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

3.
Secretory epithelial cells are found in exocrine organs such as the pancreas and are also found in the lining of the lungs and gut. One important regulator of cell function in epithelial cells is the concentration of cytosolic Ca2+. The study of Ca2+ signaling in these cells has a long history and recent work has now identified, at the molecular level, key components in the Ca2+ signaling cascade. Furthermore, advances in fluorescent imaging techniques has enabled a detailed insight into the subcellular distribution of the agonist-evoked [Ca2+]i signal. A number of spatially different [Ca2+]i responses have been identified. Firstly, global [Ca2+]i signals are observed in response to high agonist concentrations. Secondly, at lower agonist concentrations trains of local [Ca2+]i spikes, restricted to the secretory pole region of pancreatic acinar cells, have been identified. Finally, these local [Ca2+]i spikes have now been further devolved into microdomains of [Ca2+]i elevation. The [Ca2+]i signal within a single microdomain has been shown to be the crucial trigger in the regulation of the ion channels important in fluid secretion.  相似文献   

4.
5.
BACKGROUND: Complex branched muscle fibers are frequently observed in the muscles of mdx mutant mice and/or in damaged muscles. To investigate whether the complex branched fibers were present in the compensatory hypertrophied muscles of rats, we examined the morphological changes in these muscles. METHODS: We examined the hypertrophied plantaris (PLA) muscle of the Wistar male rats, prepared by surgical ablation of synergistic muscles. The muscle was examined using three-dimensional analysis with scanning electron microscopy, immunohistochemical detection of proliferating cells using 5-bromo-2'-deoxyuridine (BrdU) and histological and histochemical characterization. Studies were performed at 48 hours, 2, 4, 6, 10, and 15 weeks after surgical preparation. RESULTS: The muscle hypertrophy ratio (muscle weight relative to the contralateral intact control side), gradually increased from 2 to 10 weeks, and the peak value (48.6%) occurred at the 10th week. The total number of fibers did not change significantly at any time interval. However, the number of branched muscle fibers increased significantly (P < 0.05) after 6 weeks, and accounted for about 2.5% of the total fibers at the 15th week. Most branched fibers showed complex features resembling the "anastomosing syncytial reticulum" described in myopathic animals. The fibers were observed mainly in the middle and distal portions of the PLA muscle. The proportion and distribution of proliferating cells in the entire PLA muscle corresponded with the distribution of the complex branched fibers. These results were also observed in muscle tissues prepared for histological and histochemical examination. CONCLUSIONS: The presence of a large proportion of complex branched fibers in a limited segment of the compensatory hypertrophied muscle suggests that this hypertrophy model represents a pathological and/or pathophysiological hypertrophy model rather than a normal physiological process.  相似文献   

6.
Apoptosis is the process of cellular self-destruction, and genes such as bcl-2 and bax are known to inhibit and promote apoptosis, respectively. In this study, we show that apoptosis can be induced in pancreatic beta-cell lines, and we investigate the apoptotic pathways through the bcl-2 and bax genes and intracellular Ca2+. Serum deprivation induces apoptosis in the MIN6 and RINm5F pancreatic beta-cell lines, and alters the bcl-2 messenger RNA (mRNA) and protein. KCl, BayK, A23187, and ionomycin elicit an elevation of cytosolic/nuclear Ca2+, which, however, is insufficient to evoke apoptosis or to alter bcl-2 or bax mRNA expression in MIN6 cells. The extracellular Ca2+ chelators, EGTA and 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetrapotassium salt, hydrate, evoke apoptosis and also alter the ratio of bcl-2 to bax mRNA and protein concomitantly with the depletion of cytosolic/nuclear Ca2+. This indicates that there are at least two apoptotic pathways in pancreatic beta-cells: through serum deprivation and through a decrease in cytosolic/nuclear Ca2+. MIN6 cells exhibit reduced insulin secretion induced by glucose regardless of the molecular pathway of apoptosis. Apoptosis in pancreatic beta-cells, therefore, may be closely related to the impairment of insulin secretion in certain pathological conditions such as diabetes mellitus.  相似文献   

7.
1. We designed a new method to determine quantitatively the intracellular Ca2+ concentration ([Ca2+]i) in endothelial cells in situ, using front-surface fluorometry and fura-2-loaded porcine aortic valvular strips. Using this method, we investigated the characteristics of the G-protein involved in endothelin-1 (ET-1)-induced changes in [Ca2+]i of endothelial cells in situ. 2. Endothelial cells were identified by specific uptake of acetylated-low density lipoprotein labelled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI-Ac-LDL). Double staining with DiI-Ac-LDL and fura-2 showed that the valvular strip was covered with a monolayer of endothelial cells and that the cellular component which contributed to the fura-2 fluorescence, [Ca2+]i signal, was exclusively endothelial cells. 3. ET-1 (10(-7) M) induced an elevation of [Ca2+]i consisting of two components: the first was a rapid and transient elevation to reach a peak, followed by a second, sustained elevation (the second phase). The first phase was composed of extracellular Ca(2+)-independent and -dependent components, while the second phase was exclusively extracellular Ca(2+)-dependent. The extracellular Ca(2+)-independent component of the first phase was due to the release of Ca2+ from intracellular storage sites. The second phase and part of the first phase of [Ca2+]i elevation were attributed to the influx of extracellular Ca2+. The Ca2+ influx component was completely inhibited by 10(-3) M Ni2+ but was not affected by 10(-5) M diltiazem. 4. Pertussis toxin (IAP) markedly inhibited the extracellular Ca2+-dependent elevation of [Ca2+]j, but had no effect on the extracellular Ca2+-independent elevation of [Ca2+], caused by ET-1 (10-7M).5. Bradykinin (10-7 M) or ATP (10- 5M) elevated [Ca2+]i and these responses also consisted of extracellular Ca2+-independent and extracellular Ca2+-dependent components. IAP had no effect on either component of the [Ca2+]i elevation induced by bradykinin or ATP.6. From these findings we conclude that, in porcine endotheliel cells in situ, ET-1 elevates [Ca2+]i as are result of a Ca2+ influx component from the extracellular space and release of intracelluarly stored Ca2+ .The Ca2+ influx is regulated by an IAP-sensitive G-protein, while the release of Ca2+ from the intracellular store is not.  相似文献   

8.
1. In A7r5 cells loaded with the Ca2+ indicator fura-2, we examined the effect of a Ca2+ channel blocker SK&F 96365 on increases in intracellular free Ca2+ concentrations ([Ca2+]i) and Mn2+ quenching of fura-2 fluorescence by endothelin-1 (ET-1). Whole-cell patch-clamp was also performed. 2. Higher concentrations (> or = 10 nM) of ET-1 (higher [ET-1]) evoked a transient peak and a subsequent sustained elevation in [Ca2+]i: removal of extracellular Ca2+ abolished only the latter. A blocker of L-type voltage-operated Ca2+ channel (VOC) nifedipine at 1 microM reduced the sustained phase to about 50%, which was partially sensitive to SK&F 96365 (30 microM). 3. Lower [ET-1] (< or = 1 nM) evoked only a sustained elevation in [Ca2+]i which depends on extracellular Ca2+. The elevation was partly sensitive to nifedipine but not SK&F 96365. 4. In the presence of 1 microM nifedipine, higher [ET-1] increased the rate of Mn2+ quenching but lower [ET-1] had little effect. 5. In whole-cell recordings, both lower and higher [ET-1] induced inward currents at a holding potential of -60 mV with linear I-V relationships and reversal potentials close to 0 mV. The current at lower [ET-1] was resistant to SK&F 96365 but was abolished by replacement of Ca2+ in the bath solution with Mn2+. The current at higher [ET-1] was abolished by the replacement plus SK&F 96365. 6. In a bath solution containing only Ca2+ as a movable cation, ET-1 evoked currents: the current at lower [ET-1] was sensitive to Mn2+, whereas that at higher [ET-1] was partly sensitive to SK&F 96365. 7. These results indicate that in addition to VOC, ET-1 activates two types of Ca2+-permeable nonselective cation channel depending on its concentrations which differ in terms of sensitivity to SK&F 96365 and permeability to Mn2+.  相似文献   

9.
A new binary polymer matrix tablet for oral administration was developed. The system will deliver drug at variable rates according to zero-order kinetics for total drug content and is manufactured by direct compression technology. Highly methoxylated pectin and hydroxypropyl methylcellulose (HPMC) at different ratios were used as major formulation components, and prednisolone was used as the drug model. The results indicate that by increasing pectin:HPMC ratios, release rates are increased, but zero-order kinetics prevail throughout the dissolution period (e.g., 3-22 h). Different pectin:HPMC ratios provide a range of viscosities that modulates drug release and results in rapid hydration/gelation in both axial and radial directions, as evidenced by photomicrographic pictures. This hydration-gelation contributes to the development of swelling/erosion boundaries and consequently to constant drug release. Combination of these particular polymers facilitates rapid formation of necessary boundaries (i.e., gel layer and solid core boundaries) to control overall mass transfer processes. The drug fraction released (Mt/M infinity), release kinetics, and mechanism of release were analyzed by applying the simple power law expression Mt/M infinity = kt(n), where k is a kinetic constant and the exponent n is indicative of the release mechanism. The calculated n values for pectin:HPMC ratios of 4:5, 3:6, and 2:7 were >0.95, which is indicative of a Case II transport mechanism (polymer relaxation/dissolution). The achievement of total zero-order kinetics is due to the predictable swelling/erosion and final polymer chain deaggregation and dissolution that is regulated by the gelling characteristics of polymers in the formulation.  相似文献   

10.
We have used the fluorescent probe fura-2 to perform agonist studies of the receptor(s) that mobilizes Ca2+ ions in response to extracellular ATP in human parathyroid cells. Extracellular ATP induced Ca2+ responses in both normal and adenomatous parathyroid cells. Activation resulted in an initial small transient response during which Ca2+ ions were released from intracellular stores, followed by a prominent plateau response during which Ca2+ ions entered the cells from the extracellular fluid. The responses exhibited moderate desensitization upon repeated stimulation with ATP, and the ratio of the plateau to the peak response remained constant for any given group of activated cells. The baseline intracellular calcium concentration was 100 +/- 4.3 nM (mean +/- S.E.M., n = 3). Following maximal activation by extracellular ATP it rose to a peak of 684 +/- 45.7 nM (n = 3) and a plateau level of 415 +/- 9.9 nM (n = 3). We examined the effects of a variety of nucleotide species. The order of potency was: adenosine, AMP < alpha, beta-methylene ATP < ADP < ATP approximately UTP. In the concentration range 1-1000 microM, UTP (the concentration of agonist inducing a half-maximal response, EC50 = 2.4 microM) was slightly more potent than ATP (EC50 = 3.6 microM), and the two nucleotides evoked similar maximal responses. In the concentration range 0.01-1.0 microM, however, there was a clear difference in the behaviour of the two nucleotides. In particular, ATP, but not UTP, evoked responses that suggested the presence of a second receptor of higher potency but markedly lower efficacy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
BACKGROUND: To elucidate the molecular mechanism underlying sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediated signaling, we compared their effects with those of adenosine triphosphate (ATP) and angiotensin II (Ang II) on the cytosolic free Ca2+ concentration ([Ca2+]i), inositol 1,4, 5-trisphosphate (IP3) generation and arachidonic acid release in rat glomerular mesangial cells. METHODS: The fluorescent Ca2+ indicator, Fura-2, was used to measure the [Ca2+]i changes in cultured rat glomerular mesangial cells either in suspension or attached to the coverslips. RESULTS: SPC 5 microM, S1P 5 microM, ATP 100 microM and Ang II 90 nM all induced increases in the [Ca2+]i, and the effect showed marked homologous desensitization, while heterologous desensitization was less. After the initial exposure of the cells to SPC, the increase in [Ca2+]i induced by subsequent addition of ATP or Ang II was only reduced by about 14.3% and 4.8%, respectively. After the initial exposure to S1P, a greater reduction was seen (42. 1% and 47.7%, respectively). Both arachidonic acid release and IP3 generation were activated by all four agonists with an identical rank order of effectiveness of SPC > S1P > ATP = Ang II; both were pertussis toxin-sensitive and cholera toxin-resistant. The arachidonic acid release induced by all four agonists showed identical susceptibility to removal of extracellular Ca2+, whereas IP3 generation displayed differential extracellular Ca2+ dependence. Only SPC-induced IP3 generation was highly sensitive to extracellular Ca2+ level, and this Ca2+ dependence was abolished after pretreatment of cells with arachidonyl trifluoromethyl ketone (AACOCF3), a phospholipase A2 inhibitor. Furthermore, the Mn2+ influx was markedly greater in SPC-stimulated cells than in either control or other agonist-stimulated cells, and was decreased by prior exposure of cells to AACOCF3. After phospholipase A2 was inhibited or in the absence of extracellular Ca2+, SPC displayed identical effectiveness as S1P on desensitizing the action of ATP or Ang II on the increase in [Ca2+]i. Conclusions. Our results indicate that all four agents primarily activate phospholipase C through their receptor occupancies, but that SPC alone also induces further significant Mn2+ influx and IP3 generation attributable to its primary stimulatory effect on arachidonic acid release. Thus, the heterologous desensitization to ATP or Ang II induced by SPC was less profound than that induced by S1P, since SPC induced a Ca2+ influx.  相似文献   

12.
The present study aimed at determining the distribution and somatotopical organization of striatal activation during performance of simple motor tasks. Ten right-handed healthy volunteers were studied by using a 3-T whole-body magnetic resonance unit and echo planar imaging. The tasks consisted of self-paced flexion/extension of the right fingers or toes. Motor activation was found mainly in the putamen posterior to the anterior commissure (10 of 10 subjects) and the globus pallidus (6 subjects), whereas the caudate nucleus was activated in only 3 subjects, and in a smaller area. Thus, performance of a simple motor task activated the sensorimotor territory of the basal ganglia. Within the putamen, there was a somatotopical organization of the foot and hand areas similar to that observed in nonhuman primates. These data suggest that functional magnetic resonance imaging can be used to study normal function of the basal ganglia and should therefore also allow investigation of patients with movement disorders.  相似文献   

13.
The present study examined whether the synthetic glucocorticoid dexamethasone (DEX) can modulate voltage-gated Ca2+ channel (VGCC) activity, and as a consequence agonist-induced increases in cytosolic Ca2+, in cultured rat adrenal medullary chromaffin (RAMC) cells. Exposure to 1 microM DEX for 48 h significantly increased peak VGCC current (delta +140%). DEX treatment also significantly potentiated the increases in cytosolic Ca2+ in response to submaximal stimulatory concentrations of KCl (delta +64%) and nicotine (delta +32%). The Ca2+ channel agonist BAY K-8644 increased both VGCC current (delta +109%) and potentiated the KCl-stimulated increase in cytosolic Ca2+ (delta +35%) to a comparable extent to that seen with DEX. These data suggest that DEX treatment increases VGCC activity, and that this increased Ca2+ influx leads to potentiation of agonist-induced increases in cytosolic Ca2+ in RAMC cells.  相似文献   

14.
15.
Caffeine is known to stimulate gastric acid secretion, but, the effects of caffeine on gastric mucus secretion have not been clarified. To elucidate the action of caffeine on gastric mucin-producing cells and its underlying mechanism, the effects of caffeine on mucus glycoprotein secretion and agonist-induced [Ca2+]i mobilization were examined in human gastric mucin secreting cells (JR-I cells). The measurement of [Ca2+]i using Indo-1 and the whole cell voltage clamp technique were applied. Mucus glycoprotein secretion was assessed by release of [3H]glucosamine. Caffeine by itself failed to increase [Ca2+]i and affect membrane currents, while it dose-dependently inhibited agonist (acetylcholine (ACh) or histamine)-induced [Ca2+]i rise, resulting in inhibiting activation of Ca2+-dependent K+ current (I(K.Ca)) evoked by agonists. The effect of caffeine was reversible, and the half maximal inhibitory concentration was about 0.5 mM. But, caffeine did not suppress [Ca2+]i rise and activation of I(K.Ca) induced by A23187 or inositol trisphosphate (IP3). Theophylline or 3-isobutyl-1-methyl-xanthine (IBMX) did not mimic the effect of caffeine. Caffeine failed to stimulate mucus secretion, while it significantly decreased ACh-induced mucus secretion. These results indicate that caffeine selectively inhibits agonist-mediated [Ca2+]i rise in human gastric epithelial cells, probably through the blockade of receptor-IP3 signaling pathway, which may affect the mucin secretion.  相似文献   

16.
Endothelins (ETs) are 21 amino acid peptides with vasoactive and mitogenic properties. The three isopeptides (ET-1, -2, and -3) and their receptors (E1A and ETB subtypes) display expression in numerous tissues and possibly mediate autocrine/paracrine actions. The present investigation shows that ET-1 triggers biphasic increases of the concentration of cytoplasmic Ca2+ ([Ca2+]i) in pathological human parathyroid cells. Both the peak and sustained [Ca2+]i increase, as well as the proportion of responding cells, are dose-dependent in the 10(-10)-10(-7) mol/L range of ET-1. In absence of external Ca2+, the ET-1-induced [Ca2+]i peak is attenuated. ET-3 has no effect on [Ca2+]i indicating functional dominance of the ETA receptor subtype. ET-1 (10 nmol/L) lowers parathyroid hormone secretion in 0.5 mmol/L but not in higher external Ca2+ concentrations, and parathyroid cell ET release is inhibited by increases of external Ca2+. Fibroblasts overgrowing the parathyroid chief cells during monolayer culture respond to ET-1 with biphasic [Ca2+]i increases or repetitive [Ca2+]i spikes, but show no response to elevation of external Ca2+. These findings imply that ET secretion and ET receptor expression may constitute an autocrine/paracrine mechanism in the regulation of human PTH secretion.  相似文献   

17.
The interaction of large depolarization and dihydropyridine Ca2+ agonists, both of which are known to enhance L-type Ca2+ channel current, was examined using a conventional whole-cell clamp technique. In guinea pig detrusor cells, only L-type Ca2+ channels occur. A second open state (long open state: O2) of the Ca2+ channels develops during large depolarization (at +80 mV, without Ca2+ agonists). This was judged from lack of inactivation of the Ca2+ channel current during the large depolarizing steps (5 s) and slowly deactivating inward tail currents (= 10-15 ms) upon repolarization of the cell membrane to the holding potential (-60 mV). Application of Bay K 8644 (in 2.4 mM Ca(2+)-containing solutions) increased the amplitude of the Ca2+ currents evoked by simple depolarizations, and made it possible to observe inward tail currents (= 2.5-5 ms at -60 mV). The open state induced by large depolarization (O2*) in the Bay K 8644 also seemed hardly to inactivate. After preconditioning with large depolarizing steps, the decay time course of the inward tail currents upon repolarization to the holding potential (-60 mV) was significantly slowed, and could be fitted reasonably with two exponentials. The fast and slow time constants were 10 and 45 ms, respectively, after 2 s preconditioning depolarizations. Qualitatively the same results were obtained using Ba2+ as a charge carrier. Although the amplitudes of the inward currents observed in the test step and the subsequent repolarization to the holding potential were decreased in the same manner by additional application of nifedipine (in the presence of Bay K 8644), the very slow deactivation time course of the tail current was little changed. The additive enhancement by large depolarization and Ca2+ agonists of the inward tail current implies that two mechanisms separately induce long opening of the Ca2+ channels: i.e., that there are four open states.  相似文献   

18.
The effects of Selegiline hydrochloride (Selegiline HCl) on the intracellular Ca2+ contents of primarily cultured rat striatal, mesencephalic neuronal cells and PC-12 cells were examined by the use of a Ca2+ imaging analyzer. In the former two cell types, Selegiline HCl (10(-5)-10(-6) M) induced a transient inflow of extracellular Ca2+ through the voltage-dependent N-type Ca2+ channel. In addition, all cells indicating an increase in the intracellular Ca2+ content were found to be catecholaminergic neurons which showed a positive reaction with anti-tyrosine hydroxylase antibodies. Furthermore, a transient intracellular influx of Ca2+ was observed in the NGF-pretreated PC-12 cells. From these results, it is suggested that Selegiline HCl elicits various functions, including antioxidation, activation of neurotrophic factor biosynthesis and neuronal protection probably via an unidentified specific proteins of tyrosine hydroxylase-positive neurons.  相似文献   

19.
The alpha-amylase of Streptomyces sp. IMD 2679 was subject to catabolite repression. Four different growth rates were achieved when the organism was grown at 40 degrees C and 55 degrees C in the presence and absence of cobalt, with an inverse relationship between alpha-amylase production and growth rate. Highest alpha-amylase yields (520 units/ml) were obtained at the lowest growth rate (0.062 h-1), at 40 degrees C in the absence of cobalt, while at the highest growth rate (0.35 h-1), at 55 degrees C in the presence of cobalt, alpha-amylase production was decreased to 150 units/ml. As growth rate increased, the rate of specific utilisation of the carbon source maltose also increased, from 46 to 123 micrograms maltose (mg biomass)-1 h-1. The pattern and levels of alpha-glucosidase (the enzyme degrading maltose) detected intracellularly in each case, indicate that growth rate effectively controls the rate of feeding of glucose to the cell, and thus catabolite repression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号