共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。 相似文献
3.
支持向量机(SVM)是一种表现卓越的分类方法,而灰度共生矩阵(GLCM)则是一种很好的纹理分析方法,故而本文提出了一种使用灰度共生矩阵进行特征提取的应用支持向量机的纹理特征分类法。实验结果表明,与直接应用灰度信息进行分类的支持向量机算法相比,本文方法可以取得更为准确的分类结果。 相似文献
4.
传统的基于像素与像素基础上的遥感影像光谱分类方法忽视了邻近像素值之间潜在有用的空间信息,三十多年来,人们一直都在谋求利用遥感影像本身所固有的空间信息以加强光谱分类,尽管从事该方面研究的人一直都很少,其实现的手段主要依靠对原始影像的滤波,滤波的一般方式是生成纹理波段以指导接下来的分类。近年来,变异函数被用来表达空间依赖性,并取代简单的方差滤波成为了纹理分类的主要手段,在这篇综述性的论文中,笔者主要讨论了两类将基于地质统计学的纹理信息集成到遥感影像分类中的应用,它们代表了当前遥感影像纹理分类的主流。 相似文献
5.
基于BEMD和LBP提取特征的纹理分类 总被引:1,自引:0,他引:1
对于纹理图像的分类,采用二维经验模式分解将图像分解成一系列的固有模态函数(IMF)和残差,并结合局部二值模式(LBP)对所提取到的各IMF图像和残差图像进行特征提取的方法。为了验证算法的有效性,对自然纹理进行特征提取,并结合支持向量机(SVM)算法对提取的特征向量进行分类,分类精确度达到98%以上。 相似文献
6.
7.
8.
二维可分离小波在纹理分析领域得到了成功的应用,但它只提取图像水平、垂直和对角方向的频率信息,其变换滤波器是各向同性的,不能很好地表达纹理的细节。利用剪切波变换优良的多尺度性、局域性和方向性,提出一种基于剪切波变换(Shearlet transform)的纹理分类算法。该方法先对纹理图像做剪切波变换,得到各尺度、方向子带的剪切系数,计算尺度间子带能量比,以尺度间能量比为权对各子带能量加权,以加权后的子带能量作为特征矢量,用K邻近分类器进行分类。实验结果表明该方法比基于小波的纹理分类方法更加有效。 相似文献
9.
遥感图像纹理特征是光谱相近林型准确分类的有效方法,然而其带来分类特征向量维数增加和计算量增大。因此,对南方山区林地TM图像进行独立成分分析ICA降维,通过计算灰度共生矩阵获取纹理特征,使用SVM分类,研究林地类型的快速分类方法。结果表明,ICA与SVM法利用遥感图像纹理特征可较准确地实现林地类型分类,分类总精度、Kappa系数分别为85.4%、0.73,均高于SVM法、BP神经网络法、最大似然法、最小距离法;其对阔叶林、针叶林、竹林的分类精度依次为78.2%、80.1%、84.3%,误识率主要是由于混交林而造成两类林地之间存在交集,易出现的针阔混交林使得阔叶林、针叶林的分类精度低于竹林。 相似文献
10.
通过对传统小波多方向性缺失和Contourlet变换系数稀疏性的分析,提出运用方向性小波Contourlet分析纹理特征,以自组特征映射神经网络(SOM)处理Contourlet变换系数的重组序列.对SOM网络输出层codebook矩阵进行奇异值分解得到纹理图像特征向量的方法进行纹理分类,在充分利用图像各尺度方向信息的基础上,有效提取了图像纹理特征.实验结果表明,该方法分类效果显著,Contourlet变换比传统小波分解更适合于图像纹理特性的分析. 相似文献
11.
一幅图像往往包含许多区域,但在对图像的理解和分析时,往往只需要其中的某个部分。因此,为方便使用常需要对目标区域进行提取。从目标区域的整体纹理特征出发,根据纹理特征的不同多次使用数学形态学的基本运算,从而达到图像区域分割的方法。该方法通过一幅具有多种纹理图案的图像为例验证了方法的可行性和有效性。运用canny算子对该图像进行边缘检测,从检测的结果可看出,该方法优于基于边缘检测的图像分割方法。 相似文献
12.
结合纹理特征的SVM样本分层土地覆盖分类 总被引:1,自引:0,他引:1
支持向量机(SVM)分类在精度、泛化性、高维数据处理等方面都具有较强的优势,在遥感影像分类中也得到了广泛应用。由于遥感影像“同物异谱”和“异物同谱”现象的影响,结合纹理特征提高SVM分类精度已成为遥感应用研究的热点。但不同尺度的纹理特征突出的信息不一,在同一尺度上难以区分的地物在多尺度空间则更容易区分,因此,采用多尺度纹理特征进行SVM分类,并从分类样本和纹理特征的选取两个方面探讨SVM土地覆盖分类的方法。首先,以ALOS影像为例,通过灰度共生矩阵提取不同尺度、不同方向的几种纹理特征;然后在光谱分类结果基础上,借助地类特征曲线,选取有效的多尺度纹理特征,最后进行样本分层分类。样本分层分类是选取首层样本进行分类,再从“漏分和错分”地块中选取新样本加入到首层样本中,得到第二层样本并对整个影像进行分类;用同样的方法选出第三层样本或更高层样本进行分类,直到结果满意为止。结果表明:该方法比仅用光谱特征的SVM分类总精度提高了8.11%,Kappa系数增加了0.11。其中,纹理特征的引入使分类总精度提高了4.13%,且对纹理特征较明显的地类更有效;采用样本分层后的分类总精度进一步提高了3.98%,且各单一地类的精度也都有不同程度的提高。借助地类特征曲线选择合适的纹理特征具有一定的可行性,并且采用样本分层的方法能够提高SVM分类的精度。 相似文献
13.
基于知识发现和决策规则的遥感图像城区土地覆盖/利用分类方法 总被引:5,自引:0,他引:5
李朝峰 《计算机工程与应用》2004,40(23):212-215
提出一种利用地类的色度信息、小波提取纹理特征、植被指数及形状知识等采用规则推理有效识别遥感土地类别的方法。采用知识发现和决策规则方法,可以充分吸收遥感专家的思想和工作经验,可以充分利用多种模糊性地学知识来提高遥感影像分类效果。最后通过实例证明了该方法的有效性。 相似文献
14.
With the emergence of a large amount of short texts, using short text classification technology to mine a large amount of effective information in short text has become a hot topic of research. For the feature selection method in the current classification process, which only considers the word frequency, and the short text is short in length and sparse keywords, the paper proposes a short text classification method based on emotional features, combined with TF-IDF, the weight of the feature words is modified with the 〖JP2〗sentiment dictionary, which can effectively improve the weight of the feature words with distinguishing ability, and avoid the problem of low accuracy caused by traditional methods which do not consider emotion but only word frequency. Using the Chinese corpus of teacher Tan Songbo for short text classification, through comparative experiments, the effectiveness of the method is verified. 相似文献
15.
针对宏观土地覆盖遥感分类的现状,充分利用MODIS相对于AVHRR数据具有的多光谱和分辨率优势,提出了利用MODIS数据进行分类特征选择与提取并结合多时相特征进行宏观土地覆盖分类的分类方法,并在中国山东省进行了分类试验,得出以下结论:①不同比例下的训练样本与验证样本影响着总体分类精度;②从MODIS数据中得到的植被指数EVI、白天地表温度Tday、水体指数NDWI、纹理特征局部平稳Homogeneity等可以作为分类特征配合参与到多波段地表反射率Ref1-7遥感影像中,能明显提高分类精度,而土壤亮度指数NDSI则没有贡献;③提取的分类特征对总体分类精度贡献大小为:EVI贡献最大,提高近6个百分点,其次是Homogeneity、NDWI,均提高近4个百分点,而最少的Tday也贡献了近3个百分点;④各分类特征对不同地物类别具有不同的分离度,在提高某些类别的分离性时,有可能降低了其它类别的分离性。试验结果表明:在没有其它非遥感信息的前提下,仅利用MODIS遥感自身信息对宏观土地覆盖分类就可达到较高精度。 相似文献
16.
范宇杰陈黎飞郭躬德 《数据采集与处理》2017,32(3):612-620
传统的静态特征码检测方法无法识别迷惑型恶意代码,而动态检测方法则需要消耗大量资源;当前,大多数基于机器学习的方法并不能有效区分木马、蠕虫等恶意软件的子类别。为此,提出一种基于代码恶意行为特征的分类方法。新方法在提取代码恶意导向指令特征的基础上,学习每种代码类别特有的恶意行为序列模式,进而将代码样本投影到由恶意行为序列模式构成的新空间中。同时基于新特征表示法构造了一种近邻分类器对恶意代码进行分类。实验结果表明,新方法可以有效地捕捉代码的恶意行为并区分不同类别代码之间的行为差异,从而大幅提高了恶意代码的分类精度。 相似文献
17.
18.
决策树分类法及其在土地覆盖分类中的应用 总被引:24,自引:1,他引:24
基于决策树分类算法在遥感影像分类方面的深厚潜力,探讨了3种不同的决策树算法(UDT、MDT和HDT)。首先对决策树算法结构、算法理论进行了阐述,然后利用决策树算法进行遥感土地覆盖分类实验,并把获得的结果与传统统计分类法进行比较。研究表明,决策树分类法有诸多优势,如:相对简单、明确、分类结构直观,另外,与以假定数据源呈一固定概率分布,然后在此基础上进行参数估计的常规分类方法相比,决策树属于严格“非参”,对于输入数据空间特征和分类标识具有更好的弹性和鲁棒性(Robust)。 相似文献
19.
多传感器融合的SLAM系统定位精度相比单一传感器的SLAM系统更高,但在低纹理场景或退化场景下的定位精度有待提高。提出一种点线特征融合的激光雷达视觉单目惯导紧耦合SLAM系统(PL2VI-SLAM),其由点线特征融合的视觉惯导系统(PLVIS)和激光雷达惯导系统(LIS)两个子系统组成。通过PLVIS系统实现点线特征的提取与匹配,使用滑动窗口选择性地引入关键帧,并将惯性导航器件与相机紧耦合以解算位姿。LIS系统将多个约束集成到因子图中进行联合优化,其初始化状态可以作为PLVIS的初始猜测,通过扫描匹配实现激光雷达里程计,并将点云深度分别与PLVIS系统的特征点以及特征线进行关联,为视觉特征提供精确的深度值,提升定位精度。此外,两个子系统将联合进行回环检测,并对位姿进行矫正。在jackal、handled以及自制的长走廊数据集上的实验结果表明,与LVI-SAM、VINS-MDNO及LIO-SAM系统相比,该系统的定位精度更高,适用于低纹理场景及退化场景,并能满足实时性要求。 相似文献