共查询到19条相似文献,搜索用时 78 毫秒
1.
许少秋 《中国图象图形学报》2009,14(4):707-711
提出了一种新的识别户外不同交通标志形状的算法。为了减少数字噪声的影响和分离提取独立的交通标志形状,基于颜色分割输出的外边缘可通过离散曲线演变进行简化和分解。正切空间中弧线的相似程度决定离散曲线演变的程度。形状的识别是通过模板匹配来实现的,待识别形状与模板之间的最小几何差异决定形状的类别。实验结果表明本算法是平移、旋转和尺度恒定的,能够在复杂的交通场景中进行可靠的形状识别。 相似文献
2.
3.
4.
一种基于颜色不变量和PHOG特征的交通标志检测方法 总被引:1,自引:0,他引:1
《计算机应用与软件》2014,(8)
提出一种基于颜色不变量和塔式梯度方向直方图PHOG(Pyramid Histogram of Oriented Gradients)特征的交通标志检测方法。该方法首先在高斯颜色模型下提取颜色不变量特征并对其进行聚类,以分割出候选感兴趣区域;然后提取感兴趣区域的PHOG特征并用支持向量机进行形状分类,进而区分交通标志形状和噪声区域。对自然环境下的交通标志,PHOG特征所采用的Canny算法在获取感兴趣区域轮廓时会产生较多噪声,从而降低交通标志分类性能。为此,提出利用Chromatic-edge来增强目标轮廓并抑制噪声以提升PHOG特征描述能力。实验结果表明该方法对光照、阴影、遮挡、以及背景复杂等因素具有较高的鲁棒性,获得了较高的检测率和较低的误检率。 相似文献
5.
形状的几何特征数值描述与交通标志的识别 总被引:4,自引:0,他引:4
形状是反映物体特征信息的重要载体,形状描述的主要目的在于提取用以估计区域的特征信息,针对一个典型的二值计算机视觉问题即交通标志的识别进行研究,提出了基于集合交换的形状几何特征的数值描述,并用以描述交通标志的内核形状的特征。4种相应的形状识别方法被应用于交通标志的识别。实验结果表明新方法的有效性和鲁棒性。 相似文献
7.
综合考虑识别率、时间复杂度以及鲁棒性,提出一种边缘、纹理、颜色多特征融合和支持向量机(SVM)的交通标志识别算法。通过提取能够描述交通标志图像边缘信息的方向梯度直方图(HOG)特征并进行统计平均,与能够表示标志图像内部纹理信息的局部二值模式(LBP)特征融合得到降维后的HOG-maxLBP特征,再级联交通标志的颜色特征作为最终的特征向量,最后利用SVM进行交通标志训练和分类。实验结果表明,该算法不仅提高了交通标志的识别率,而且降低了时间复杂度,增强了系统鲁棒性。 相似文献
8.
基于颜色和形状特征的图像检索方法 总被引:2,自引:0,他引:2
提出了一种基于颜色和形状特征的图像检索方法。在对HSV颜色模型量化的基础上,提取颜色直方图作为图像的颜色特征。在提取形状特征时,结合颜色量化结果,利用图像分割提取图像的形状特征,利用两特征的加权距离计算图像之间的相似度,而后进行图像检索。实验结果表明,该方法取得了较好的检索效果。 相似文献
9.
快速、可靠的交通标志检测是对其进行准确识别的前提,以颜色分割为基础,提出了一种基于曲线拟合的圆形交通标志检测算法。首先利用交通标志的颜色特征预分割出潜在的交通标志区域,然后针对圆形交通标志轮廓具有圆形这一关键特征,通过边缘检测并采用非线性最小二乘技术准确的确定出图像中的圆形交通标志区域。实验结果表明了算法的有效性。 相似文献
10.
11.
Selection and fusion of color models for image feature detection 总被引:1,自引:0,他引:1
Stokman H Gevers T 《IEEE transactions on pattern analysis and machine intelligence》2007,29(3):371-381
The choice of a color model is of great importance for many computer vision algorithms (e.g., feature detection, object recognition, and tracking) as the chosen color model induces the equivalence classes to the actual algorithms. As there are many color models available, the inherent difficulty is how to automatically select a single color model or, alternatively, a weighted subset of color models producing the best result for a particular task. The subsequent hurdle is how to obtain a proper fusion scheme for the algorithms so that the results are combined in an optimal setting. To achieve proper color model selection and fusion of feature detection algorithms, in this paper, we propose a method that exploits nonperfect correlation between color models or feature detection algorithms derived from the principles of diversification. As a consequence, a proper balance is obtained between repeatability and distinctiveness. The result is a weighting scheme which yields maximal feature discrimination. The method is verified experimentally for three different image feature detectors. The experimental results show that the fusion method provides feature detection results having a higher discriminative power than the standard weighting scheme. Further, it is experimentally shown that the color model selection scheme provides a proper balance between color invariance (repeatability) and discriminative power (distinctiveness) 相似文献
12.
13.
为了提高苹果分级的准确率和稳定性,在图像处理的基础上,基于Fourier描述子和HIS颜色模型分别提取了苹果的形状和颜色两类主要外观特征,并分别用神经网络进行单特征初步分级,将其结果作为证据,通过D-S证据理论进行决策级融合,根据分类阈值得到最终分级结果。实验结果表明,该方法分级正确率达93.75%,与单指标特征分级相比,识别率高,稳定性好。 相似文献
14.
由于小波变换具有良好的局部特性与多尺度特性,能多尺度逼近边缘,这使得它在图像奇异性检测和特征提取方面得到了广泛的应用。采用二次样条二进小波变换进行边缘检测,用边缘梯度方向直方图表示图像形状特征,用颜色直方图表示图像颜色特征,提出了综合颜色特征和形状特征的图像检索算法。实验结果表明,该算法不仅具有较好的检索性能,而且对图像中存在的光照变化和几何变化(尺度、平移、旋转等)具有较强的鲁棒性。 相似文献
15.
Neural Computing and Applications - Traffic sign recognition is the second part of traffic sign detection and recognition systems. It plays a crucial role in driver assistance systems and provides... 相似文献
16.
在分块核函数的基础上提出了基于多个图像特征进行组合决策的识别方法。该算法先对交通标识图像提取两个不同的特征,即HOG特征和基于子模式组合的分块核函数特征,然后针对不同特征构造相应的分类器,最后对这几个分类器的输出采用投票机制进行决策融合。在德国交通标识数据库上的实验结果表明,该方法相比单特征识别具有更高的识别准确率。 相似文献
17.
目的 构建支持分支和查询分支间的信息交互对于提升小样本语义分割的性能具有重要作用,提出一种多尺度特征融合与交叉指导的小样本语义分割算法。方法 利用一组共享权重的主干网络将双分支输入图像映射到深度特征空间,并将输出的低层、中间层和高层特征进行尺度融合,构造多尺度特征;借助支持分支的掩码将支持特征分解成目标前景和背景特征图;设计了一种特征交互模块,在支持分支的目标前景和整个查询分支的特征图上建立信息交互,增强任务相关特征的表达能力,并利用掩码平均池化策略生成目标前景和背景区域的原型集;利用无参数的度量方法分别计算支持特征和原型集、查询特征与原型集之间的余弦相似度值,并根据相似度值给出对应图像的掩码。结果 通过在PASCAL-5(i pattern analysis,statistical modeling and computational learning)和COCO-20i(common objects in context)开源数据集上进行实验,结果表明,利用VGG-16(Visual Geometry Group)、ResNet-50(residual neural network)和ResNet-101作为主干网络时,所提模型在1-way 1-shot任务中,分别获得50.2%、53.2%、57.1%和23.9%、35.1%、36.4%的平均交并比(mean intersection over union,mIoU),68.3%、69.4%、72.3%/和60.1%、62.4%、64.1%的前景背景二分类交并比(foreground and background intersection over union,FB-IoU);在1-way 5-shot任务上,分别获得52.9%、55.7%、59.7%和32.5%、37.3%、38.3%的mIoU,69.7%、72.5%、74.6%和64.2%、66.2%、66.7%的FB-IoU。结论 相比当前主流的小样本语义分割模型,所提模型在1-way 1-shot和1-way5-shot任务中可以获得更高的mIoU和FB-IoU,综合性能提升效果显著。 相似文献
18.
目的 多目标跟踪与分割是计算机视觉领域一个重要的研究方向。现有方法多是借鉴多目标跟踪领域先检测然后进行跟踪与分割的思路,这类方法对重要特征信息的关注不足,难以处理目标遮挡等问题。为了解决上述问题,本文提出一种基于时空特征融合的多目标跟踪与分割模型,利用空间三坐标注意力模块和时间压缩自注意力模块选择出显著特征,以此达到优异的多目标跟踪与分割性能。方法 本文网络由2D编码器和3D解码器构成,首先将多幅连续帧图像输入到2D编码层,提取出不同分辨率的图像特征,然后从低分辨率的特征开始通过空间三坐标注意力模块得到重要的空间特征,通过时间压缩自注意力模块获得含有关键帧信息的时间特征,再将两者与原始特征融合,然后与较高分辨率的特征共同输入3D卷积层,反复聚合不同层次的特征,以此得到融合多次的既有关键时间信息又有重要空间信息的特征,最后得到跟踪和分割结果。结果 实验在YouTube-VIS(YouTube video instance segmentation)和KITTI MOTS(multi-object tracking and segmentation)两个数据集上进行定量评估。在YouTub... 相似文献
19.
目的 点云语义分割在无人驾驶、城市场景建模等领域中具有重要意义,为了提升大场景条件下点云特征的提取效率,提出一种大场景双视角点云特征融合的语义分割方法(double-view feature fusion network for LiDAR semantic segmentation,DVFNet)。方法 大场景双视角点云特征融合的语义分割方法由两个部分组成,分别为双视角点云特征融合模块和基于非对称卷积的点云特征整合模块。双视角点云特征融合模块将柱状体素特征与关键点全局特征相结合,减少降采样导致的特征损失;基于非对称卷积的点云特征整合模块将双视角点云特征使用非对称卷积进行处理,并使用多维度卷积与多尺度特征整合来实现局部特征优化。结果 本文提出的大场景双视角点云特征融合语义分割方法,在SemanticKITTI大场景点云数据集上达到63.9%的准确率,分割精度在已开源的分割方法中处于领先地位。结论 通过文中的双视角点云特征融合语义分割方法,能够实现大场景条件下点云数据的高精度语义分割。 相似文献