首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为考察BRBF结构的层间位移与层剪力的对应关系及塑性铰分布情况,文中以BRBF为研究对象,以屈曲约束支撑的水平力分担率β以及框架强度CB等主要研究参数建立6个模型,通过二阶非线性计算程序,对模型进行弹塑性静力分析。结果表明:屈曲约束支撑的水平力分担率30%~60%的模型的层间变形中低层集中,屈曲约束支撑的水平力分担率90%的模型的层间变形低层集中;模型的层间集中变形以及塑性铰分布情况不受框架强度影响。  相似文献   

2.
屈曲约束支撑(BRB)屈服后刚度较低,某一层或几层BRB率先屈服会造成屈曲约束支撑框架(BRBF)进入弹塑性阶段后不同楼层间刚度的突变,框架弯矩会重分布,进而影响框架的损伤机制。为此,提出框架基于柱端弯矩比的强柱弱梁计算公式,公式表明:当框架节点下部与上部柱端弯矩同号相等时,柱梁承载力比需求最小为1;当弯矩反向相等时,需求则为无穷大;通过分析楼层间BRB刚度比对两层BRBF弯矩分布的影响,说明BRBF中某层支撑屈服会导致该层节点下部与上部柱端弯矩比发生较大的改变,节点上部柱端弯矩甚至反向增大;综上,支撑屈服后BRBF易出现层间柱铰机制。最后,通过算例验证提出的强柱弱梁计算公式和BRBF弯矩分布规律,同时表明:当BRB-框架刚度比较大或者框架柱梁承载力比较小时,BRBF损伤集中效应较为明显。  相似文献   

3.
为了研究多层屈曲约束支撑钢框架(Buckling Restrained Braced Frame,简称BRBF)在屈曲约束支撑(Buckling Restrained Brace,简称BRB)分担率β值较高时,层剪力的优化分布,对β值约为0.9的框架振动模型(MF)和质点系振动模型(MS-0、MS-1和MS-2)进行弹塑性时程分析,研究其层剪力、层间位移角、最大倾覆弯矩及支撑固定柱的地震响应。研究结果如下:β值较高时,MF层响应值,中低楼层与质点系振动模型吻合较好,上部楼层接近质点系振动模型MS-1和MS-2。采用静力推倒法进行抗震设计时,修正底部剪力法的F1i和F2i模型分析结果与实际情况更吻合。用底部剪力法设计高β值的BRBF,存在结构柱的地震静力等效值被低估的可能性,有一定程度的安全隐患。在强震作用下,第2振型卓越,上部楼层层反应值较大。  相似文献   

4.
主震引发的多次强余震可能导致屈曲约束支撑(BRB)在地震作用下发生疲劳破坏。BRB突然失效可能使主震引起的微小损伤加剧,引发结构倒塌。因此,有必要考虑余震对BRB构件和BRBF结构的影响。通过增量动力方法,对考虑BRB疲劳性能的屈曲约束支撑框架(BRBF)进行易损性分析,对比了在单独主震和主余震序列作用下BRBF结构的地震易损性差异。结果表明,在高强度主余震序列作用下,BRBF结构的失效概率显著增加,对其性能要求更高。此外,分别以峰值层间位移角和残余峰值层间位移角作为需求参数指标,对比分析了BRBF结构在主余震序列作用下的易损性差别。结果表明,以残余峰值层间位移角为参数指标时,对结构性能要求更严格。  相似文献   

5.
多层屈曲约束斜撑钢框架弹塑性分析研究   总被引:1,自引:0,他引:1  
以多层屈曲约束斜撑钢框架为主要研究对象,斜撑框架强度CB以及屈曲约束斜撑的水平力分担率β为主要研究参数,拟设计6个建筑模型,对各模型进行了基于塑性铰理论的二阶非线性时程分析,考察了强震作用下各模型各层的层间位移、层剪力、屈曲约束斜撑的塑性能量分布等。结果表明,各模型的强度CB值从0.3增大到0.5或屈曲约束斜撑的水平力分担率β值从30%增大到90%时,各模型的各层最大层间位移反应值中的弯曲变形反应值越大,这种情况上层部位更明显。随着斜撑框架强度CB值或屈曲约束斜撑的水平力分担率β值的增加,各模型的各层屈曲约束斜撑分担的剪力和各层最大层剪力比值也变大。  相似文献   

6.
约束屈曲支撑在多层钢框架中的应用研究   总被引:1,自引:0,他引:1  
张宪江  黄昆 《钢结构》2008,23(10):5-9
首先,提出约束屈曲支撑-框架结构(BRBF)的设计流程。其次,通过罕遏地震作用下的弹塑性时程分析,得到框架损伤量沿层分布规律。基于此规律和最大名义刚度比,可以确定结构各层应布置的约束屈曲支撑内核的截面面积。最后,对此约束屈曲支撑-框架结构进行非线性动力时程分析。分析结果表明:基于框架损伤量沿层分布规律的约束屈曲支撑分布模式,在强震作用下最大层间位移角分布比较均匀,减震效果良好。  相似文献   

7.
地震作用下屈曲约束支撑框架具有较好的消能减震效果,但是支撑进入塑性后残余变形较大,影响了框架震后可修复。将形状记忆合金(SMA)与屈曲约束支撑(BRB)组合,形成了SMA自复位屈曲约束支撑(SMA-SCBRB)。为了对比普通屈曲约束支撑(BRB框架)和SMA自复位屈曲约束支撑框架(SMA-SCBRB框架)的动力特性,基于已开展的足尺振动台试验模型,选用了6条近场地震波和4条远场地震波作为地震动输入,对比两类框架的动力反应。结果表明:BRB框架结构具有较好的消能减震效果,近场地震波作用下,BRB框架的顶点位移、顶点残余位移、层间位移角和层间残余位移角均大于远场地震波作用下的结构反应;将框架中的BRB按照"等屈服力原则"替换为SMA-SCBRB,近场和远场地震波作用下BRB框架和SMA-SCBRB框架有着相近的顶点位移和层间位移角,能够保证SMA-SCBRB通过轴向变形充分耗能;BRB框架具有较大的顶点残余位移和层间残余位移角,近场地震波作用下残余变形更大;而相应的SMA-SCBRB框架的残余变形降低,特别是下部楼层降低得更为显著,且SMA-SCBRB框架各层的层间残余位移角相近,对结构震后修复更为有利。  相似文献   

8.
以典型的对称屈曲约束斜撑钢框架为主要研究对象,斜撑框架强度CB以及屈曲约束斜撑的水平力分担率β为主要研究参数,通过二阶非线性静动力分析,对各模型的层间变形、层间力以及塑性能量分布等进行了比较研究。考察了各模型各层的层间位移、层剪力、屈曲约束斜撑的塑性能量分布以及层滞回曲线关系等。结果表明:屈曲约束斜撑水平力分担率β≈30%~60%时,各模型各层的层间静、动力分析结果基本吻合。  相似文献   

9.
上海浦东国际机场卫星厅的中央大厅结构复杂,布置有耗能型屈曲约束支撑,为获得罕遇地震下的结构性能水平以及屈曲约束支撑的耗能情况,采用动力弹塑性时程分析方法对其进行了分析计算。通过动力特性、基底剪力和顶点位移对比分析,验证了模型及计算结果的合理性。根据分析结果可知,层间位移角满足规范要求,构件损伤满足罕遇地震下结构性能设计要求。在罕遇地震下,屈曲约束支撑的耗能优异,不同地震波作用下耗能占比差异较大。将BRB耗能占比最优区间控制在合理的层间位移角范围内,可最大限度地发挥BRB耗能水平。  相似文献   

10.
屈曲约束支撑体系的应用与研究进展(Ⅱ)   总被引:24,自引:0,他引:24  
屈曲约束支撑框架体系(BRBF)是新近发明并逐渐得到应用的一种框架体系。因为屈曲约束支撑(BRB)在受拉和受压时都可屈服而不屈曲,因此克服了传统支撑体系的缺点。第二部分简要介绍了SEAOC-AISC提出的反复加载试验要求,介绍了BRB各组成部分、BRB构件本身及BRBF体系的性能。以及BRBF的设计方法。  相似文献   

11.
通过对乌鲁木齐宝能城282.4m超高层钢结构进行动力弹塑性时程分析,研究了结构在大震下的动力响应、结构耗能分布及关键构件的塑性发展。分析结果表明:在大震作用下,结构的最大层间位移角小于规范限值;结构底部6层及三个加强层伸臂布置的屈曲约束支撑(BRB)在大震下均进入屈服,导致结构所承受的地震作用大幅下降,减小了结构的地震反应;由于在关键部位布置了BRB,给结构提供了合理的刚度,地震下整体刚度下降较慢,主要抗侧构件极少进入屈服,框架柱基本未屈服;屈曲约束支撑和框架梁是结构主要的耗能构件,其中1~6层Y向BRB及10层伸臂桁架是BRB耗能的主要区域。  相似文献   

12.
节点是框架结构中受力较为复杂的区域,也是装配式结构需要解决的核心,合理确定节点区的受力性能,对预测结构破坏形式有重要意义。基于混凝土框架,论文提出一种梁柱铰接形式及一种带屈曲约束支撑(BRB)的梁柱铰接框架体系(BRBF),分析在水平荷载下,梁-柱-支撑节点区的受力性能及传力途径,运用SAP2000,采用Pushover分析方法对结构进行非线性分析,得到BRB在不同连接位置对连接部位的受力影响,并给出节点内力的计算公式。分析表明:在BRBF中,BRB仅与梁连接对节点更有利,BRB与梁连接时,其水平分力向梁跨内传递,竖向分力向梁端传递。  相似文献   

13.
为研究摇摆防屈曲支撑钢筋混凝土框架抗震性能,利用OpenSees建立8层3跨钢筋混凝土框架(RCF)、防屈曲支撑钢筋混凝土框架(BRBF)与摇摆防屈曲支撑钢筋混凝土框架(RBRBF)有限元模型,并进行弹塑性动力时程分析,从层间位移角、最大顶层位移、最大基底剪力和最大底柱轴力等结构响应角度,研究二维和三维模型分析间关系、...  相似文献   

14.
针对自复位结构耗能能力不足、峰值变形大、高阶振型效应显著和楼面加速度放大等关键问题,提出了基于混合控制手段的自复位结构减控方法。依据ASCE 7-10规范,设计了含三层和九层自复位支撑钢框架(SCBF)、带黏滞阻尼器的自复位支撑钢框架(SCBF+VD)、屈曲约束支撑框架(BRBF)以及屈曲约束支撑和自复位支撑组合形成的"半自复位"钢框架(BRBF+SC)等16个结构体系模型,利用OpenSees有限元软件建立体系模型,进行了静力推覆分析、非线性时程分析和增量动力分析,在此基础上得到基于最大层间位移角的倒塌易损性曲线和基于残余层间位移角的不同损伤状态易损性曲线。结果表明:附加黏滞阻尼器能够有效改善SCBF耗能能力不足的缺陷,缓解并抑制高阶振型效应,附加黏滞阻尼比为0.15时可降低SCBF的顶层层间位移角达88%,同时楼板加速度响应也得到了大幅抑制,甚至低于BRBF的。另外,与BRBF相比,半自复位钢框架可以有效降低残余变形,并且不会显著增加楼面加速度。SCBF+VD的倒塌裕度比均大于BRBF的。最大可能地震(MCE)水准下,采用附加阻尼比为0.15的三层和九层SCBF残余位移损伤状态超越...  相似文献   

15.
参照钢结构设计规范(GB50017-2003)和抗震设计规范(GB50011-2010)设计了一幢10层钢结构框架,并对结构进行简化。采用Perform-3d非线性分析软件进行建模,基于等能量和等效阻尼比原则,在原基本结构中加入合适尺寸的屈曲约束支撑(BRB)组合成屈曲约束支撑钢框架。对原结构和BRB结构进行了非线性推覆分析和动力时程分析,在此基础上分析结构的地震响应,对比原结构与BRB结构的屈服机制。研究结果表明,结构设计时加入屈曲约束支撑可以有效减少结构层间位移响应,大幅减少框架结构所承担的楼层剪力和框架结构构件的塑性耗能比例,充分发挥了屈曲约束支撑作为建筑结构消能构件的耗能作用,大幅提高了结构整体的抗震性能。  相似文献   

16.
通过对含有屈曲约束支撑的框架进行振动台试验,研究了屈曲约束支撑对结构地震反应的减震效果。选用3条天然波和1条人工波进行加载,记录了模型的加速度反应,分析了BRB在试验中的力学性能,并与理论计算值进行了对比,研究了台面输入加速度为0.6g和1.0g时框架底层BRB的滞回曲线。探讨了不同台面输入下输入能量在模型中的分布情况。试验及研究结果表明,当台面输入加速度小于0.6g时,屈曲约束支撑可以为结构提供稳定的侧向刚度;当台面输入加速度大于0.6g时,屈曲约束支撑通过自身塑性变形来吸收能量;当台面输入加速度为1.0g时,屈曲约束支撑可以吸收台面输入的20%~40%的能量。  相似文献   

17.
屈曲约束支撑体系的应用与研究进展(Ⅰ)   总被引:45,自引:0,他引:45  
屈曲约束支撑框架体系(BRBF)是新近发明并逐渐得到应用的一种抗震框架体系。因为屈曲约束支撑(BRB)在受拉和受压时都可屈服而不屈曲,因此克服了传统支撑体系的缺点。本文分两部分,第一部分主要介绍其基本原理和各组成部分的概况、BRBF的特点,还简要介绍了该体系在各国家和地区应用和研究的进展情况。  相似文献   

18.
俊发城一期10号地块超高层办公楼结构高度195.1m,为高度和高宽比均超限的乙类建筑,结构采用双重抗侧力钢框架-中心支撑(部分屈曲约束支撑)结构体系。基于抗震性能的设计方法,采用YJK,ETABS软件对结构进行了小震作用下的弹性分析,采用SAP2000软件对结构进行了中震及大震作用下的弹塑性分析。结果表明,小震下屈曲约束支撑(BRB)均未屈服,轴力设计值满足设计承载力的要求,中震、大震下BRB均能先于主体结构屈服,且在大震下BRB耗能效果明显,结构的最大层间位移角小于规范限值。在构件设计与验算方面,介绍了BRB与支撑框架处钢梁抗剪连接件的设计方法与验算结果。  相似文献   

19.
天津滨海新区市民活动中心结构形式为带屈曲约束支撑的框架结构。屈曲约束支撑框架(BRBF)是一种新型的带支撑的框架形式,它克服了传统中心支撑框架易屈曲的缺点和在延性、耗能能力上的局限性。文章结合工程实例,详细介绍了屈曲约束支撑框架体系的施工要点、特性和工程应用。  相似文献   

20.
黄锐  姚佩歆 《建筑结构》2020,50(3):59-65
结合某高地震烈度区工程,对混凝土框架-屈曲约束支撑结构的抗震设计方法以及相关问题进行了研究。分析了混凝土框架-屈曲约束支撑结构的最大适用高度、合理的附加刚度、适宜的层间位移角限值,并通过罕遇地震下的弹塑性时程分析考察结构的抗震性能。结果表明:混凝土框架-屈曲约束支撑结构的抗震性能优于纯混凝土结构,主体混凝土框架更容易成为"损伤可控结构",实现震后可恢复性;建议混凝土框架-屈曲约束支撑结构的最大适用高度按混凝土框架结构和框架-抗震墙结构二者最大适用高度的平均值采用;为控制主体混凝土框架的损伤,屈曲约束支撑按刚度分配的地震倾覆力矩宜大于结构总地震倾覆力矩的50%,在各层承担的楼层地震剪力不宜小于30%;建议屈曲约束支撑的附加刚度比控制在1左右,延性系数不小于3;混凝土框架-屈曲约束支撑结构相对于混凝土框架结构的层间位移角限值,在多遇地震下应根据支撑不屈服的要求做适当调整。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号