首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谷正钊 《机床与液压》2016,44(24):75-80
根据动力机构功率匹配,对阀控非对称缸的负载流量和负载压力给出了一种定义形式,以使建立的模型对于阀控非对称缸和对称缸具有普遍适用性;针对阀控非对称缸因结构而产生的不对称性,对其数学模型进行了整理和统一,并通过仿真分析进行了验证;将本模型应用于某试验平台位置控制系统中,分析参数变化和动力源形式对系统性能的影响,为系统的优化和控制策略提供依据.  相似文献   

2.
阀控液压缸统一流量方程的分析研究   总被引:2,自引:0,他引:2  
从阀控对称液压缸、非对称液压缸的统一特性出发,对负载压力与负载流量进行了重新定义,并对工程中出现的对称阀、非对称阀控制对称缸,对称阀、非对称阀控制非对称缸的各种组合形式,推导了统一的阀控液压缸系统的流量方程,不仅兼顾了液压系统实际工作规律和阀控缸系统的统一性,而且为阀控缸系统的其它特性进一步分析提供了理论基础,并得出了一些对理论分析及工程实际有一定指导意义的结论。  相似文献   

3.
针对阀控非对称机构建模和分析当中,存在多种形式定义负载流量和负载压力的问题,根据动力机构功率匹配,归纳了定义负载流量和负载压力的通用原则及表达式,并分析了物理意义.在此基础上,对采用不同形式负载流量和负载压力的阀控非对称缸机构进行了分析,并给出推荐采用的定义形式.  相似文献   

4.
陈立娟 《机床与液压》2023,51(16):150-159
针对阀控非对称缸位置控制系统,通过理论公式搭建非对称液压缸的数学模型,采用前馈PID控制方法实现其位置控制并进行仿真和实验验证。利用传递函数推导出基于轴控阀的阀控非对称缸位置控制系统数学模型;根据所推导的数学模型采用前馈PID控制算法,利用AMESim搭建了非对称液压缸位置控制系统仿真模型;通过对阀控非对称液压缸位置控制系统进行实验,验证了搭建的轴控阀阀芯位置控制系统与非对称液压缸位置控制系统的正确性和有效性,实现了轴控阀阀芯精确位置控制与对外负载的控制。  相似文献   

5.
张尚盈 《机床与液压》2012,40(10):71-74
根据阀控非对称缸系统的非对称特性,修正系统负载、负载压力和负载流量的定义;探讨了匹配非对称阀控制非对称缸系统的最佳负载匹配准则,研究了匹配非对称阀控制非对称液压缸系统在最小液压刚度时的动力机构特性,为非对称阀控制非对称缸系统的进一步研究奠定了理论基础。  相似文献   

6.
阀控非对称缸被动加载系统数学模型的建立   总被引:1,自引:0,他引:1  
根据非对称液压缸的特性,首先定义了负载流量、负载压力及液压缸活塞的初始位置等一些参数.通过对阀控非对称缸被动加载系统中各个部分的分析建模,得到了整个系统的数学模型,为阀控非对称缸被动加载系统的研究奠定了基础.  相似文献   

7.
分析了零开口阀控非对称缸系统与对称缸系统在负载压力、负载流量以及等效容积定义上的不同,推导出理想和实际零开口阀两种情况下的数学模型,通过仿真分析了二者的系统特性.结果表明:二者固有频率相对误差为22.5%;阻尼比相对误差为54%;实际零开口阀控非对称缸系统的数学模型更能真实地反映系统的动静态特性.  相似文献   

8.
阀控非对称液压缸往返运动动态特性对比分析   总被引:2,自引:0,他引:2  
伺服阀控制非对称液压缸往返运动时的动态速度特性有很大差别.笔者分别推导了阀控非对称液压缸正反两方向运动时的传递函数,得到了两种情况时阀控缸系统的速度增益,液压相对阻尼比、固有频率与负载刚度等之间的关系,并进行了对比分析.对阀控非对称液压缸的设计、仿真及控制具有积极的指导意义.  相似文献   

9.
为解决泵控非对称缸两腔所需流量不相等的问题,在轴向对称柱塞泵的基础上,提出一种能够平衡非对称缸流量差的变量非对称泵控缸闭式方案。通过控制变量非对称泵的斜盘角度实现对非对称缸的运动方向与两腔流量的控制,并将其应用于负载敏感液压挖掘机动臂回路中。为分析该方案的可行性,利用AMESim软件建立系统仿真模型。通过仿真分析,对比了变量非对称泵控系统与传统负载敏感阀控系统动臂运行特性和能耗特性。结果显示,采用变量非对称泵控系统动臂运行更加平稳,能耗降低36.9%。  相似文献   

10.
设计了双螺纹副结构的数字液压缸,分析了工作机理,利用AMESim搭建了数字缸模型,并分别对对称阀、非对称阀控制非对称数字缸在空载和恒定力负载工况下进行了仿真,结果表明利用非对称阀可消除换向时的压力跃变,特别是对超越伸出工况,能够避免气穴的产生,为数字缸的优化设计提供了有益尝试。  相似文献   

11.
在大型飞机结构强度试验中,伺服阀和作动缸的选取是通过额定流量、负荷量以及行程来实现的,而二者的动态特性未给予充分考虑,可能导致伺服阀和作动缸不匹配,严重影响阀控缸的动态性能。为此,文中建立了伺服阀和非对称缸的传递函数,仿真分析二者动态特性对阀控非对称缸动态行为的影响,绘出伺服阀和作动缸伯德图。仿真结果显示:截止频率是阀控缸匹配特性的量度;保持阀控缸工作性能的最低截止频率为10 Hz。  相似文献   

12.
以阀控非对称缸系统为研究对象,为得到系统的准确模型以及提高系统的位置控制精度,对系统进行辨识。针对液压缸的非线性和非对称性,提出基于位置基准和位置闭环双PID相结合的位置控制方法。建立阀控缸系统数学模型;依托力士乐液压实验平台和NI测控系统,分别从时域和频域两个角度对阀控缸系统进行辨识,得到系统准确的数学模型。基于该数学模型,分析系统特性。对所设计的阀控非对称缸位置控制策略进行实验验证。结果表明:在保证系统稳定裕量的前提下,该系统可实现较高精度的位置控制。  相似文献   

13.
阀控非对称缸单向加载方法研究   总被引:1,自引:0,他引:1  
杜星  王鑫涛 《机床与液压》2017,45(22):105-108
为提高飞机结构疲劳试验中阀控非对称缸的加载速度,提出阀控非对称缸单向加载方法,并建立了数学模型,完成了加载速度、最大超调量及能耗等性能分析与试验验证。与阀控非对称缸常规加载方法相比,单向加载方法可有效提高阀控非对称缸的加载速度,且超调量小,能耗低,有较高的工程应用价值。  相似文献   

14.
张柏森  李松  宋锦春  佟琨 《机床与液压》2012,40(13):121-123,105
介绍一种采用液压比例阀控制辊缝的新型管材矫直机的液压控制系统,通过PLC控制比例阀来控制液压缸位置,达到辊缝的自动调节和偏差补偿。此新型管材矫直机采用8个阀控缸系统,实现辊缝自动调节,自动化程度高,辊缝调节简便。在8个阀控缸系统中,由于对称阀控制非对称缸难度较大,只针对其中的非对称缸系统采用DSHplus软件进行了建模和仿真分析。对对称阀控制非对称缸系统特性进行进一步的探讨,与对称阀控制对称缸系统进行比较,并针对对称阀控制非对称缸系统的两种常见补偿方法进行建模仿真,分析其补偿效果。  相似文献   

15.
为研究在大型飞机结构疲劳试验中缸内摩擦力对阀控非对称缸压力的影响,建立了非对称缸压力的数学模型,分析计算了阀控非对称缸换向时压力受摩擦力影响发生的变化。利用AMESim仿真软件对系统进行了仿真得到了相应的压力变化曲线,验证了理论推导。仿真结果表明:摩擦力使得非对称缸的压力突变值增加且压力曲线出现振荡,该研究为大型飞机结构疲劳试验中使用的非对称缸的设计提供参考。  相似文献   

16.
针对阀控非对称缸组成的位置伺服系统鲁棒性差的问题,提出了一种结合反馈线性化理论和滑模变结构理论的控制算法。建立阀控非对称缸的非线性模型,运用反馈线性化理论对该模型进行局部线性化,针对线性化后的模型设计滑模控制器,最后通过线性逆变换得到原非线性系统的控制算法。为了验证算法的有效性进行了仿真分析,仿真结果表明:该控制算法有效地减小了位置跟踪误差,提高了系统的鲁棒性,改善了位置跟踪的品质。  相似文献   

17.
针对风帆驱动控制系统提出了差动缸液压控制方案,利用AMEsim软件建立液压系统仿真模型,再结合Simulink软件在控制系统设计方面的优势,对风帆驱动系统进行联合仿真研究。通过联合仿真比对了常规阀控非对称缸与本文作者提出的差动缸控制系统,验证了本文作者提出的差动缸控制风帆系统的优越性。分析了某一定常力负载下的阶跃动态响应及风帆所受实际变化负载力状态下的跟踪角度曲线,仿真表明该控制方案对风帆驱动控制的有效性和可靠性,可为风帆助航船风帆控制提供技术支持。  相似文献   

18.
零开口非对称四通阀特性的理论研究   总被引:2,自引:3,他引:2  
本文根据引入的负载流量和负载压力的定义,详细地分析具有非对称缸的零开口非对称四通阀的特性,并通过阀的分析验证了负载流量和负载压力定义的正确性。  相似文献   

19.
非对称伺服阀静态特性的理论研究   总被引:7,自引:1,他引:6  
赵继云  柴光远 《机床与液压》1995,(5):275-278,274
本文在引入新的负载流量和负载压力定义的基础上,详细地分析了一种特殊的非对称伺服阀的静态特性,并得出一个重要的结论:阀的特性并不是固定不变的,而是随其控制的是对称缸还是非对称缸而变化。  相似文献   

20.
阀控非对称缸力伺服系统中两腔油压变化的分析   总被引:3,自引:0,他引:3  
非对称缸由于两腔有效作用面积的不同,使系统的静、动态特性与对称缸相比较有很大的差异。静动态特性的差异,与两腔油压的变化有着必然的联系,应用压力反馈补偿法,无疑会改善阀控非对称缸的特性。而对两腔油压的变化进行分析是恰当地补偿的前提,本文对阀控非对称缸力伺服系统中的三种加载状态:静载荷加载、等加载梯度加载、动态加载,油缸两腔油压变化作了理论分析和实验研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号