共查询到19条相似文献,搜索用时 323 毫秒
1.
云计算环境下,应用提供者可以根据需要决定租用虚拟资源的数量。租用大量资源会得到Qo S保障,从而获得较好的收益,但应用提供者需要为租用资源付费。同样,租用少量资源,会节省租用资源投入,但资源不足难以保障Qo S,SLA(Service Level Agreement)违背会带来经济损失。因此,租用多少虚拟资源才能使得资源得到充分利用,达到应用提供者的收益最大化成为亟待解决的问题。针对此问题,从应用提供者收益角度考虑,兼顾SLA收益损失和服务器租用成本投入,提出虚拟机资源调度方法,旨在使得应用租用者收益最大化。该方法利用排队论建模目标云应用的性能,并引入SLA收益损失函数估算在租用一定虚拟资源情况下的SLA收益损失,最后,利用爬山算法动态调整物理资源租用数量以达到收益最大化的目标。实验结果表明,与当前常见的虚拟机资源调度方法 1VMPer Job、1VM4All和Bin Packing相比,所提出的方法使得云应用提供者的成本投入分别降低了17.92%、22.85%和10.74%。 相似文献
2.
针对IaaS(Infrastructure as a Service)云计算中资源调度的多目标优化问题,提出一种基于改进多目标布谷鸟搜索的资源调度算法。在多目标布谷鸟搜索算法的基础上,通过改进随机游走策略和丢弃概率策略提高了算法的局部搜索能力和收敛速度。以最大限度地减少完成时间和成本为主要目标,将任务分配特定的VM(Virtual Manufacturing)满足云用户对云提供商的资源利用的需求,从而减少延迟,提高资源利用率和服务质量。实验结果表明,该算法可以有效地解决IaaS云计算环境中资源调度的多目标问题,与其他算法相比,具有一定的优势。 相似文献
3.
目前,云平台的大多数动态资源分配策略只考虑如何减少激活物理节点的数量来达到节能的目的,以实现绿色计算,但这些资源再配置方案很少考虑到虚拟机放置的稳定性。针对应用负载的动态变化特征,提出一种新的面向多虚拟机分布稳定性的基于多目标优化的动态资源配置方法,结合各应用负载的当前状态和未来的预测数据,综合考虑虚拟机重新放置的开销以及新虚拟机放置状态的稳定性,并设计了面向虚拟机分布稳定性的基于多目标优化的遗传算法(MOGANS)进行求解。仿真实验结果表明,相对于面向节能和多虚拟机重分布开销的遗传算法(GA-NN),MOGANS得到的虚拟机分布方式的稳定时间是GA-NN的10.42倍;同时,MOGANS也较好权衡了多虚拟机分布的稳定性和新旧状态转换所需的虚拟机迁移开销之间的关系。 相似文献
4.
一种用于云计算资源调度的双向蚁群优化算法 总被引:1,自引:0,他引:1
对云计算环境中的资源调度问题进行了研究,针对蚁群优化算法(ACO)在处理大规模组合优化问题时易陷入搜索速度慢和局部最优解的缺陷,提出了一种实现云计算负载均衡的双向蚁群优化算法(BACO)用于资源调度;该算法考虑到了每个虚拟机的负载和计算能力,同时在云环境中引入了蚂蚁的向前移动和向后移动;最后通过在CloudSim平台进行仿真实验,结果表明该算法的总任务完成时间较短,具有较好的寻优能力,并且能够实现负载均衡,是一种有效的资源调度算法。 相似文献
5.
为降低云计算中工作流调度的时间和成本,提出了一种双向调度算法,以实现后向Backward和前向Forward的双向调度。首先,Backward算法按照每个任务的最迟开始时间进行后向调度;此基础上,为降低虚拟机调度费用,Forward算法尽可能地提前调度每个任务,且在前向调度过程中充分考虑到工作流deadline、最大cost及传输时间的限制,从而实现对虚拟机的动态调度。由实验可知,本算法比BDA算法以及ICPCP算法更节约虚拟机调度成本,提高了调度的灵活性。 相似文献
6.
7.
8.
采用基于非支配性排序的多目标遗传算法—NSGA-Ⅱ,设计了一种求解多模式、多种类资源约束的多目标资源受限项目调度问题的遗传算法,该算法所设计的编码包含两部分,一部分为一个任务链表,另一部分为任务链表中各任务所对应的执行模式组成的模式向量。将所设计的算法用于求解文献中的以项目总工期和资源均衡为目标的农业项目调度问题,结果表明此算法对于求解多目标资源受限项目调度问题是有效的。 相似文献
9.
10.
张晓东 《计算机工程与设计》2021,42(7):1948-1956
云计算弹性的资源提供和虚拟机性能的不稳定性使得工作流的执行面临诸多不确定性.针对此问题,考虑执行时间具有不确定性,基于执行时间和代价的同步优化,提出同步满足健壮性的三目标优化工作流调度算法.以满足帕累托最优的均衡最优解集的形式进行建模,以启发式方式对模型求解.为衡量均衡解的质量,设计基于超体积的评估机制,得到冲突目标的... 相似文献
11.
针对云计算中现有调度算法为追求最短完成时间而不能很好兼顾负载平衡的问题,提出基于预先分类的Min-Min调度算法,该算法先利用能衡量资源计算和通信能力的属性信息对资源进行划分等级,再求出每个调度任务在资源中的最小执行时间,计算任务对应资源等级与最小执行时间的乘积,使用该乘积最小的任务-资源对进行调度.解决了原始Min-Min调度算法负载不均衡的问题,兼顾了执行时间最小和负载均衡.模拟的云仿真系统实验结果表明,该算法在平均任务响应时间、平均任务执行速度下降比和系统利用率等方面优于原始的Min-Min调度算法. 相似文献
12.
云计算环境下的资源合理调度是当前的研究热点,针对粒子群优化算法的不足,引入膜计算理论,提出一种基于膜计算改进粒子群优化算法的云资源调度算法(PSO-MC)。对云资源调度问题进行分析,建立云资源调度的目标函数,受到膜计算的启发,将粒子放入膜中,主膜内粒子进行精细化局部寻优,辅助膜内的粒子进行全局搜索,通过膜区域之间信息传递搜索结果,找到云资源调度问题的最优解,在CloudSim平台对算法进行仿真实验。结果表明,PSO-MC算法减少了任务的平均完成时间,提高了任务处理的效率,使云计算资源调度更加合理。 相似文献
13.
针对多技能员工受限的多项目调度问题的特点,建立了以项目群的总工期及总费用最小为目标的调度模型;将云模型嵌入到基于Pareto的向量评价微粒群算法(VEPSO-BP)中,提出了一种新的云多目标微粒群算法(CMOPSO);该算法结合任务分配矩阵及开工时间设计了微粒编码,能根据微粒适应度自动调整惯性因子;结合软件研发实例测试了CMOPSO的性能,与VEPSO-BP进行了对比;实验结果表明CMOPSO能取得更为丰富且优化效果更好的Pareto非支配解。 相似文献
14.
服务器执行任务产生的能耗是云计算系统动态能耗的重要组成部分。为降低云计算系统任务执行的总能耗,提出了一种基于能耗优化的最早完成时间任务调度方法,建立了服务器动态功率计算模型,基于动态功率的服务器执行能耗模型,以及云计算系统的能耗优化模型。调度策略根据任务的截止时间要求和在不同服务器上的执行能耗,选择不同的调度算法,以获得最小任务执行总能耗。实验结果证明,提出的任务调度方法,能够较好地满足任务截止时间的要求,降低云计算系统任务执行的总能耗。 相似文献
15.
针对多目标等量分批柔性作业车间调度问题,提出了一种集成优化方法。构建了一种以完工时间最短、生产成本最低为优化目标的多目标等量分批柔性调度集成优化模型。提出并设计了一种改进的非支配排序遗传算法对模型加以求解。算法中引入面向对象技术处理复杂的实体逻辑关系,采用三段式分段编码技术分别对分批方案、加工顺序、设备进行编码,采用三段式分段交叉和变异的混合遗传算子实现遗传进化,采用两种精细化调度技术进行解码以缩短流程时间。通过案例分析验证了所提方法的有效性。 相似文献
16.
17.
Clouds are rapidly becoming an important platform for scientific applications. In the Cloud environment with uncountable numeric nodes, resource is inevitably unreliable, which has a great effect on task execution and scheduling. In this paper, inspired by Bayesian cognitive model and referring to the trust relationship models of sociology, we first propose a novel Bayesian method based cognitive trust model, and then we proposed a trust dynamic level scheduling algorithm named Cloud-DLS by integrating the existing DLS algorithm. Moreover, a benchmark is structured to span a range of Cloud computing characteristics for evaluation of the proposed method. Theoretical analysis and simulations prove that the Cloud-DLS algorithm can efficiently meet the requirement of Cloud computing workloads in trust, sacrificing fewer time costs, and assuring the execution of tasks in a security way. 相似文献
18.
提出基于蚁群算法的网格调度算法,优化作业完成时间。同时局部升级和全局升级采用不同策略,解决资源负载均衡问题,满足网格的多目标优化。最后通过Gridsim仿真环境和其他算法进行比较分析。 相似文献
19.
Chunlin Li Author Vitae Layuan Li Author Vitae 《Computers & Electrical Engineering》2008,34(3):202-221
The paper presents a multi-level scheduling algorithm for global optimization in grid computing. This algorithm provides a global optimization through a cross-layer optimization realized by decomposing the optimization problem in different sub-problems each of them corresponding to one among the grid layers such as application layer, collective layer and fabric layer. The QoS of an abstraction level is a utility function that assigns at every level a different value and that depends on the kind of task that is executed on the grid. The global QoS is given by processing of the utility function values of the three different levels, using the Lagrangian method. Multi-level QoS scheduling algorithm is evaluated in terms of system efficiency and their economic efficiency, respectively. Economic efficiency includes user utility, service provider’s revenue and grid global utility. System efficiency includes execution success ratio and resource allocation ratio. 相似文献