首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local modification of an insulating GdBa2Cu3O6.5 thin film, made superconducting by illumination with a near-field scanning optical microscope (NSOM), is reported. A 100-nm aperture NSOM probe acts as a sub-wavelength light source of wavelength λexc = 480–650 nm, locally generating photocarriers in an otherwise insulating GdBa2–Cu3O6.5 thin film. Of the photogenerated electron–hole pairs, electrons are trapped in the crystallographic lattice, defining an electrostatic confining potential to enable the holes to move. Reflectance measurements at λ = 1.55 μm at room temperature show that photocarriers can be induced and constrained to move on a ≈200 nm scale for all investigated λexc. Photogenerated wires present a superconducting critical temperature T c = 12 K with a critical current density J c = 104 A cm−2. Exploiting the flexibility provided by photodoping through a NSOM probe, a junction was written by photodoping a wire with a narrow (≈ 50 nm) under-illuminated gap. The strong magnetic field modulation of the critical current provides a clear signature of the existence of a Josephson effect in the junction.  相似文献   

2.
We explore the performance of a scanning near-field infrared microscope, which works by scattering tightly focused CO2 laser radiation (λ = 10  μ m) from the apex of a metallized atomic force microscope tip. The infrared images of test samples prove a spatial resolution of 30 nm and are free of topographical and inertial artefacts, thus they should be of great interest for practical applications. We also observe that the infrared contrast vanishes when the input beam polarization is orthogonal to the tip axis, in accordance with theoretical expectations for a mechanism of longitudinal field interaction.  相似文献   

3.
Near-field optical second harmonic microscopy has been applied to imaging of the c/a/c/a polydomain structure of epitaxial PbZr x Ti1– x O3 thin films in the 0 <  x  < 0.4 range. Comparison of the near-field optical images and the results of atomic force microscopy and X-ray diffraction studies show that an optical resolution of the order of 100 nm is achieved. Symmetry properties of the near-field second harmonic signal allow us to obtain good optical contrast between the local second harmonic generation in c- and a-domains. Experimentally measured near-field second harmonic images have been compared with the results of theoretical calculations. Good agreement between theory and experiment is demonstrated.  相似文献   

4.
We have developed fibre probes suitable for 325 nm UV light excitation and a photoluminescence near-field scanning optical microscope (NSOM) and demonstrated the photoluminescence imaging of phosphor BaMgAl10O17:Eu2+ (BAM) particles. The probe was fabricated by a two-step-etching method that we developed. The probe had a large taper angle at the top of the probe and a small taper angle at the root. The NSOM image was different from the topographical structure but roughly reflected the corresponding features of the particles. The inhomogeneity of the photoluminescence intensity between BAM particles was observed in the NSOM image. The photoluminescence intensity with various bandpass filters showed differences between the individual particles, which means that they have different spectra.  相似文献   

5.
We have developed a microfabricated SiO2 cantilever with subwavelength aperture for scanning near-field optical microscopy (SNOM), to overcome the disadvantages of conventional optical fibre probes such as low reproducibility and low optical throughput. The microcantilever, which has a SiO2 cantilever and an aperture tip near the end of the cantilever, is fabricated in a reproducible batch process. The circular aperture with a diameter of 100–150 nm is formed by a focused ion-beam technique. Incident light is directly focused on the aperture from the rear side of the cantilever using a focusing objective, and high optical throughput (10−2 to 10−3) is obtained. The microcantilever can be operated as a SNOM probe in contact mode or in dynamic mode.  相似文献   

6.
为了提高微量气体的拉曼散射强度,本文设计并搭建了注入锁定腔增强拉曼光谱微量气体检测平台。半导体激光器(波长为638nm,功率为15mW)输出到由三块高反镜组成的V型增强腔中,结合注入锁定技术,腔内激光强度达到7.5 W,实现了500倍的增强效果。利用该实验平台对微量单一气体及其混合气体进行了拉曼检测,并根据拉曼特征谱峰选取原则及信噪比大于3的原则,确定了H2、CO、CO2、CH4、C2H6、C2H4、C2H2的特征拉曼谱峰分别为4 156,2 143,1 388,2 918,2 955,1 344,1 975cm-1,最小检测极限分别为10.2,21.7,9.4,2.1,8.9,4.9,3.3Pa。腔增强拉曼光谱法可以实现微量同核双原子气体检测及利用单一波长激光的混合气体同时检测,具有替代气体检测传统光谱方法的潜力。  相似文献   

7.
This paper reports on the spatial distribution and polarization behaviour of the optical near-field at the aperture of a Si micromachined probe. A sub-100 nm aperture at the apex of a SiO2 tip on a Si cantilever was successfully fabricated by selective etching of the SiO2 tip in a buffered-HF solution using a thin Cr film as a mask. The aperture, 10–100 nm in size, can be reproducibly fabricated by optimizing the etching time. The optical throughput of several apertures was measured. For a 100 nm aperture, a throughput of 1% was approved. The probe shows a very high optical throughput owing to the geometrical structure of the tip. The spatial distribution of the near-field light is measured and simulated using a finite difference-time domain method. The polarization behaviour of apertures with different shapes was analysed using a photon counting camera system.  相似文献   

8.
为了获得TEA CO_2激光器高质量的单纵模输出,对种子注入锁定的TEA CO_2激光器进行了研究。首先,本文提出了一种透射耦合输出的虚共焦非稳谐振腔方案,利用Glad软件的Prony法对腔模的演化进行了仿真分析,并实验记录了近场与远场的光斑光强分布。仿真结果与实验结果吻合,验证了此腔型方案的合理性。其次,在此腔型的基础上进行了腔外种子注入锁定实验,实验结果显示:自由振荡时存在频率为195 MHz的拍信号,当种子注入锁定成功后,输出激光拍频消失,波形变光滑,峰值功率降低48.6%,脉冲产生时间缩短20ns。实验结果与已有成果吻合,验证了此种透射式非稳腔的TEA CO_2激光器具有输出高质量单纵模的能力。  相似文献   

9.
Hillenbrand R 《Ultramicroscopy》2004,100(3-4):421-427
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics—a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.  相似文献   

10.
To improve the signal-to-noise ratio of near-field scanning optical microscopy, we propose attaching an infrared-excitable phosphor (IEP) to a photocantilever. One source of noise is the light scattered from locations on the sample surface other than that of the probe tip. By detecting only the light scattered from the tip, we can obtain a near-field optical signal without noise. We attached an IEP particle to a photocantilever to convert infrared light to visible light and we used 1550-nm infrared illumination, so the light scattered from the sample was only infrared. The silicon photodiode of the photocantilever is 106 times less sensitive to infrared light than to visible light. As a result, only the converted visible light from the IEP particle, i.e. the signal containing the near-field optical information from the tip, was detected. We verified that the photocantilever detected the signal in the evanescent light produced by infrared illumination and that the detected signal was the light converted by the IEP. The experimental results show the feasibility of detecting infrared light and not the background light through the use of the IEP.  相似文献   

11.
We studied a nanometre-sized optical probe in a scanning near-field optical microscope. The probe profile is determined by using a knife-edge method and a modulated transfer function evaluation method which uses nanometre-sized line-and-space tungsten patterns (with spaces 1 μm to 50 nm apart) on SiO2 substrates. The aluminium-covered, pipette-pulled fibre probe used here has two optical probes: one with a large diameter (350 nm) and the other with a small diameter (10 nm). The small-diameter probe has an optical intensity ≈63 times larger than that of the large-diameter probe, but the power is about 1/25 of that of the large probe.  相似文献   

12.
Fractal aggregates of silver nanoparticles are studied experimentally using atomic force microscopy and photon scanning tunnelling microscopy. Large changes in the near-field optical response of fractal aggregates are observed after the irradiation of samples with nanosecond laser pulses. The threshold energy density for photomodification using a 532 nm laser is measured to be 9 mJ cm−2. It is shown that photomodification-induced changes in the local optical response can be two orders of magnitude larger than changes in far-field absorption.  相似文献   

13.
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10−5.  相似文献   

14.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50° angle at the tip showed a throughput efficiency of 3.3 × 10−4 at a resolution of 100 nm.  相似文献   

15.
为了在基于回音壁模式光学微腔的光学频率梳生成中优化微腔的性能和光频梳的质量,对氟化镁晶体微腔的色散调控进行研究.首先,理论仿真研究了MgF2晶体微腔边缘形状对腔内模场和总色散的影响;接着根据仿真结果实际加工了两种面形的MgF2晶体微腔,分别为边缘平面型和单边楔形;然后,搭建了微腔性能检测系统和晶体微腔光梳生成系统,实测...  相似文献   

16.
Formation processes of β-FeSi2 from amorphous Fe-Si layers have been investigated using transmission electron microscopy (TEM). Si(111) substrates were irradiated with 120 keV Fe ions at −150°C to fluences of 1.0 × 1017 and 4.0 × 1017 cm–2. An amorphous Fe-Si layer embedded in an amorphous Si was formed in the low-fluence sample, whereas an amorphous Fe-Si surface layer on an amorphous Si was obtained in the high-fluence one. The amorphous Fe-Si layers were crystallized to β-FeSi2 after thermal annealing at 800°C for 2 h. Cross-sectional and plan-view TEM observations revealed that, prior to the formation of β-FeSi2, the amorphous Fe-Si layers crystallized to α-FeSi2 in the low-fluence sample and to ɛ-FeSi in the high-fluence one. The absence of metastable γ-FeSi2 which is considered as a precursor of epitaxially grown β-FeSi2 on Si was attributed to the instability of γ-phase in an amorphous matrix.  相似文献   

17.
Haefliger D  Stemmer A 《Ultramicroscopy》2004,100(3-4):457-464
An optical near-field at the tip of an atomic force microscope probe is utilised to pattern aluminium thin films on glass substrates by photo-thermally induced corrosion in water. Aluminium forms a thin passivating oxide layer when immersed into neutral water at room temperature. Owing to the high energy density of the near-field, the metal below the probe tip can be heated to 100°C due to absorption of the light, which then provokes breakdown of the passivation and metal corrosion. The localised near-field is generated by tip-induced enhancement of an evanescent field originating from a laser beam, that is totally internally reflected at the glass–aluminium–water interface. The process is governed by surface plasmons excited in the aluminium film by the evanescent waves and the field enhancement of the probe tip. Holes of 40 nm diameter and lines below 100 nm width have been written into a 20-nm-thick aluminium film. Applications of the scanning probe lithography process may include the one-step fabrication of point contacts or contact masks for near-field optical lithography and reactive ion etching.  相似文献   

18.
The classic diffraction limit of resolution in optical microscopy (~γ/2) can be overcome by detecting the diffracted field of a submicrometre-size probe in its near field. The present stage of this so-called scanning near-field optical microscopy (SNOM) is reviewed. An evanescent-field optical microscope (EFOM) is presented in which the near-field regime is provided by the exponentially decaying evanescent field caused by total internal reflection at a refractive-index transition. A sample placed in this field causes a spatial variation of the evanescent field which is characteristic for the dielectric and topographic properties of the sample. The evanescent field is frustrated by a dielectric probe and thus converted into a radiative field. In our case the probe consists either of an etched optical fibre or of a highly sharpened diamond tip. The probe is scanned over the sample surface with nanometre precision using a piezo-electric positioner. The distance between probe and sample is controlled by a feedback on the detected optical signal. The resolution of the microscope is determined by both the gradient of the evanescent field and the sharpness of the tip. Details of the experimental set-up are discussed. The coupling of the evanescent field to the submicrometre probe as a function of probe-sample distance, angle of incidence and polarization has been characterized quantitatively. The observed coupling is generally in agreement with presented theoretical calculations. Microscopy has been performed on a regular latex sphere structure, which clearly demonstrates the capacity of the evanescent-field optical microscope for nanometre-scale optical imaging. Resolution is typically 100 nm laterally and 10 nm vertically. The technique is promising for biological applications, especially if combined with optical spectroscopy.  相似文献   

19.
Near-field optical photomask repair with a femtosecond laser   总被引:1,自引:0,他引:1  
We present a high-resolution near-field optical tool designed for repair of opaque defects in binary photomasks. Both instrument design and near-field imaging and patterning results will be presented. Designed for ablative processing of thin metal films, the MR-100 incorporates an industrial amplified femtosecond laser, third harmonic generator and built-in autocorrelator. The ultrashort duration of the femtosecond pulses enables the tool to remove chrome layers with negligible damage to the surrounding metal or the underlying quartz substrate. The micropipette based near-field writing head can deliver power densities of hundreds of GW/cm2 to spots of several hundred nanometres and below. Repairs on sample masks will be presented and the repair quality will be discussed.  相似文献   

20.
Composite Ag(Br,I) tabular microcrystals of photographic emulsions were studied by the combination of energy-filtering electron microscopy (EFTEM) and electron energy-loss spectroscopy (EELS) in conjunction with energy-dispersive X-ray (EDX) microanalysis. The contrast tuning under the energy-filtering in the low-loss region was used to observe more clearly edge and random dislocations, {111} stacking faults in the grain shells parallel to {112} edges and bend and edge contours. Electron spectroscopic diffraction patterns revealed numerous extra reflections at commensurate positions in between the Bragg reflections and diffuse honeycomb contours; these were assigned to the number of defects in the shell region parallel to the grain edges and polyhedral clusters of interstitial silver cations, respectively. Inner-shell excitation bands of silver halide were detected and confirmed by EDX analyses, i.e. the Ag N2,3 edge at 62 eV (probably overlapped with the weak I N4,5 edge at 52 eV and the Br M4,5 edge at 70 eV), the I M4,5 edge at about 620 eV, and the Br L2,3 edge at about 1550 eV energy losses. Energy-loss near-edge structure of the Ag M4,5 edge at about 367 eV energy losses and low-loss fine structure arisen as a result of interband transitions and excitons, possibly superimposed with many electron effects, have been revealed. The crystal thickness was determined by a modified EELS log-ratio technique in satisfactory agreement with measurements on grain replicas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号