共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
研究了较低掺杂浓度时InAs量子点中直接掺杂Si对其发光特性的影响.光致发光谱(PL)的测量表明,与未掺杂样品相比,掺杂样品发光峰稍微蓝移,同时伴随着发光峰谱线明显变窄.该结果表明,在生长InAs层时直接掺杂,有利于形成大小分布更均匀的小量子点.该研究对InAs自组织量子点在器件应用方面有一定的意义. 相似文献
9.
Cu掺杂对ZnO量子点光致发光的影响 总被引:1,自引:0,他引:1
通过溶液法合成了Cu掺杂ZnO量子点。X射线衍射(XRD)和高分辨电子透射电镜(HRTEM)图像显示Cu掺杂ZnO量子点具有六角纤锌矿结构,晶粒大小为4~5nm。Cu掺杂抑制了ZnO量子点颗粒长大。室温光致发光(PL)谱观察到紫外带边和可见区两个发射峰。随着Cu掺杂浓度的增大,紫外荧光峰位发生缓慢红移,由366nm移到370nm;可见区发射峰位发生蓝移,由525nm移到495nm;同时,两个发射峰强度降低。光谱结果表明:Cu的掺入,一方面抑制表面与O空位有关的缺陷,在495nm出现了与Cu1+有关的发射峰;另一方面,Cu离子掺入ZnO量子点引入一些非辐射中心,降低了自由激子发射。 相似文献
10.
成功地用深能级瞬态谱(DLIS)研究了p 型InAs 自组织生长的量子点的电学性质,测得2.5 原子层InAs 量子点空穴基态能级在GaAs 价带底上约0.09eV,该量子点在荷电状态发生变化时需要克服一个势垒,俘获势垒高度为0.26eV.本工作首次利用DLTS测定了量子点空穴的基态能级和俘获势垒,相信对增加量子点性质的理解会起到有益的帮助 相似文献
11.
12.
13.
目前在原子尺度上人们对量子点分子束外延生长过程了解很少,所有关于量子点外延生长的理论模型和计算机模拟都是建立在传统的外延生长理论框架内。在传统理论框架内,量子点的生长过程被理解为发生在生长表面上一系列的单一的原子事件,如原子沉积、扩散、聚集等。在这种理论中,外延生长表面原子之间的相互作用被忽略;另外,按照这种理论,量子点生长过程必须是一个相对缓慢的过程。这种理论模型不可能恰当地解释所观察到的大量复杂的量子点外延生长实验现象。作者在两个实验现象基础上,提出了在InAs/GaAs(001)体系中量子点外延生长过程的新模型。这两个实验现象分别是在InAs/GaAs(001)生长表面有大量的"浮游"In原子,一个量子点的生长过程可以在很短的时间内完成(10-4 s)。在提出的新模型中,量子点的自组装过程是一个大数量原子的集体、协调运动过程。 相似文献
14.
正3.2 Wetting Layer Tailored by Epitaxial Stress Most epitaxial films wet the substrates to var-ying degrees in heteroepitaxy.In the paradigm systems of the QD epitaxial growth,In As/GaAs(001)and Ge/Si(001),the critical wetting layer(WL)for the 相似文献
15.
16.
J. H. Lee Z. M. Wang W. T. Black V. P. Kunets Y. I. Mazur G. J. Salamo 《Advanced functional materials》2007,17(16):3187-3193
We report on the ability to grow InAs quantum dots into patterns of any shape. We specifically demonstrate the spatial localization of InAs quantum dots on mesa and trench patterns varying from line, square and triangle patterns on GaAs (100) substrates by molecular beam epitaxy. Based on the underlying science, this growth approach enables the localization of InAs QDs on GaAs (100) by controlling the sidewall facets and InAs monolayer coverage. 相似文献
17.
18.
半导体量子点的电子结构 总被引:4,自引:1,他引:4
彭英才 《固体电子学研究与进展》1997,17(2):165-172
半导体量子点是一种具有显著量子尺寸效应的介观体系。文中从固体能带理论出发,对箱形量子点、球形鼻子点、巨型鼻子点以及磁场中量子点的电子结构进行了讨论。 相似文献