首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This paper presents a new broadband equivalent-circuit model for millimeter-wave transformers on silicon. The model includes a center tap on the primary and secondary, and considers coupling between all segments of the windings. A corresponding methodology to analytically extract the model from electromagnetic (EM) simulations is developed. The broadband model is verified by EM simulations and measurements. Two amplitude modulatable power oscillators with high power efficiency are demonstrated using low-loss transformers. One achieves an output power of 10.4 dBm near 57 GHz with a total efficiency of 23.6%. Applying amplitude-shift keying modulation, their maximum data rate exceeds 2 Gb/s. Simulations of these circuits showed the transformer model performs well in time-domain simulations.   相似文献   

2.
A Millimeter-wave power-combining amplifier based on the multi-way rectangular-waveguide power-dividing/combining circuit has been presented and investigated. The equivalent-circuit approach has been used to analyze the passive power-dividing/combining circuits. An eight-device amplifier is designed and measured to validate the power-dividing/combining mechanism using this technique. Both the measured 10-dB return loss bandwidth and the 2-dB insertion loss bandwidth of the passive system are more than 10?GHz. The measured maximum small-signal gain of the millimeter-wave eight-device power amplifier is 22.5?dB at 26.8?GHz with a 3-dB bandwidth of more than 6?GHz, while the input and output return loss of the proposed eight-device power amplifier is around ?10?dB from 26?GHz to 36?GHz. The measured maximum output power at 1-dB compression from the power amplifier is 28 dBm at 29.5?GHz.  相似文献   

3.
In this paper, a distributed active transformer for the operation in the millimeter-wave frequency range is presented. The transformer utilizes stacked coupled wires as opposed to slab inductors to achieve a high coupling factor of kf=0.8 at 60 GHz. Scalable and compact equivalent-circuit models are used for the transformer design without the need for full-wave electromagnetic simulations. To demonstrate the feasibility of the millimeter-wave transformer, a 200-mW (23 dBm) 60-GHz power amplifier has been implemented in a standard 130-nm SiGe process technology, which, to date, is the highest reported output power in an SiGe process technology at millimeter-wave frequencies. The size of the output transformer is only 160times160 mum2 and demonstrates the feasibility of efficient power combining and impedance transformation at millimeter-wave frequencies. The two-stage amplifier has 13 dB of compressed gain and achieves a power-added efficiency of 6.4% while combining the power of eight cascode amplifiers into a differential 100-Omega load. The amplifier supply voltage is 4 V with a quiescent current consumption of 300 mA  相似文献   

4.
A new concept for a millimeter-wave amplifier that uses circuit, waveguide, and spatial power combining is demonstrated. The passive array has a free-space-to-microstrip insertion loss below -1.5 dB from 30 to 44 GHz. Small-signal measurements of the active array reveal an average gain of 5 dB from 41 to 46 GHz and a maximum gain of 6.4 dB at 45.6 GHz. Large-signal measurements reveal a linear power gain of 2 dB and an output power of 23.7 dBm at the 1-dB compression point at 44 GHz  相似文献   

5.
A millimeter-wave monolithic integrated circuit power amplifier operating in the frequency range between 186 and 212 GHz is presented. The amplifier, dedicated to high-resolution imaging radar and communication systems, is realized in a 100 nm gate length metamorphic high electron mobility transistor technology. The three-stage design with four parallel transistors in the output stage achieves a linear gain of more than 12 dB and provides a saturated output power of more than 9 dBm and 7 dBm at 192 and 200 GHz, respectively.   相似文献   

6.
A high frequency millimeter-wave voltage-controlled oscillator (VCO) has been designed, manufactured and tested in InP single heterojunction bipolar transistor technology. The fully integrated fundamental differential VCO features high operating frequency up to 80 GHz with low phase noise about -118 dBc/Hz at 1-MHz offset and 5% tuning range. The VCO consumes only 95-mW power at a power supply of -5 V, while providing -2 dBm single-ended output power and 1 dBm for differential output power. The die size is 0.28 mm/sup 2/.  相似文献   

7.
Monolithic W-band push-pull power amplifiers have been developed using 0.1-μm AlGaAs/InGaAs/GaAs pseudomorphic T-gate power HEMT technology. The novel design approach utilizes a push-pull topology to take advantage of a virtual ground between the device pair, eliminating the series feedback of the via hole inductance, and thus improving the performance of the power amplifier at millimeter-wave frequencies. For a two-stage design presented in this paper, the measurement results show a small signal gain of 13 dB and a saturated output power of 19.4 dBm at 90 GHz. The best power added efficiency of 13.3% has been achieved at an output power of 18.8 dBm under a lower bias condition. The gain and efficiency results represent state-of-the-art performance. These are the first reported monolithic push-pull amplifiers at millimeter-wave frequencies  相似文献   

8.
Ka波段25W固态功率合成放大器   总被引:1,自引:0,他引:1  
介绍了一种新型的毫米波波导空间固态高功率合成放大器.该放大器中采用的波导-微带空间功率合成网络,在毫米波频段实现了幅度、相位对称的四路功率分配/合成和波导-微带过渡转换,由此研制的毫米波高功率合成放大器,在29 ~31 GHz范围内,合成效率高于80%,输出功率大于43.4 dBm,并在30~30.6 GHz内高于25...  相似文献   

9.
A 70-GHz bandwidth commercial photodiode has been coupled to W-band waveguide and used as a photomixing source from 75 to 170 GHz. Maximum power conversion efficiency of 1.8% was obtained at 75 GHz, where an optical input of +10 dBm yielded a nonsaturated millimeter-wave (mm-wave) power of -7.5 dBm. Optimizing the photomixer backshort tuning at individual frequencies showed that the mm-wave power decreased with frequency to a level of -30 dBm at 170 GHz. Fixed tuning allowed the generation of power across the full waveguide band from 75 to 110 GHz, with a variation within 5 dB across the majority of the band  相似文献   

10.
A SiGe millimeter-wave VCO with a center frequency around 80 GHz and an extremely wide (continuous) tuning range of 24.5 GHz ( ap 30%) is presented. The phase noise at 1 MHz offset is -97 dBc/Hz at the center frequency (and less than -94 dBc/Hz in a frequency range of 21 GHz). The maximum total output power is about 12 dBm. A cascode buffer improves decoupling from the output load at reasonable VCO power consumption (240 mW at 5 V supply voltage). A low-power frequency divider (operating up to 100 GHz) provides, in addition, a divided-by-four signal. As a further intention of this paper, the basic reasons for the limitation of the tuning range in millimeter-wave VCOs are shown and the improvement by using two (instead of one) varactor pairs is demonstrated.  相似文献   

11.
A heterostructure barrier varactor subharmonic upconverter is investigated for the first time. Odd sidebands are suppressed due to the symmetric capacitance–voltage (C–V) characteristic of the varactor and high output power is possible through epitaxial stacking of barriers. The upconverter is pumped using a millimeter-wave local oscillator, and can be used as a transmission-type double-sideband suppressed carrier modulator. The initial measured conversion loss is 8–16 dB at 100 and 200 GHz. The results are significantly improved by using external impedance tuners, which is verified through both simulations and measurements.  相似文献   

12.
A dual-gate subharmonic injection-locked oscillator (SILO) has been designed and fabricated in 0.5 μm GaAs PHEMT process for millimeter-wave communication applications. Specifically, this study proposes a dual-gate circuit topology to achieve a high-frequency oscillator with a large output signal power. The proposed dual-gate transistor also performs a wideband negative resistance characteristic by which the self-oscillation frequency can easily be determined with a proper resonator. The measured self-oscillation frequency of the proposed SILO is approximately 49 GHz, and the frequency tuning range is adjustable from 48.7 GHz to 49.7 GHz with an output power of 8 dBm. By injecting a 2nd-order (~24.5 GHz) subharmonic signal into the dual-gate SILO, the maximum locking range of 5.6 GHz can be approached at an input power of 11 dBm without any self-oscillation frequency tuning. With changing the input frequency to be a 3rd-order subharmonic injection (~16.3 GHz), an output locking range of 2.9 GHz also can be achieved. The measured phase noises of the output signals from 2nd- and 3rd-order subharmonic injections are −101 and −100 dBc/Hz, respectively, at 100-kHz offset frequency.  相似文献   

13.
A millimeter-wave power amplifier based on a coaxial-waveguide power-combining circuit is presented in this paper. A coaxial stepped impedance transformer is used to provide an impedance transition from the 50- $Omega$ input coaxial line to the oversized coaxial waveguide, and its equivalent-circuit model has also been developed. A Ka-band four-device coaxial-waveguide power amplifier is fabricated and tested. The 10-dB return loss bandwidth of the fabricated amplifier is from 27.5 to 40 GHz, and the power amplifier has 17–25.9 dB gain over a wide bandwidth from 26 to 38 GHz. The measured output power at 1-dB gain compression is about 26.6 dBm at 30 GHz, with a power-combining efficiency of about 90%.   相似文献   

14.
A monolithic Ka-band transmitter consisting of a voltage-controlled oscillator (VCO) and a power amplifier using 0.25 μm MESFET technology has been developed for high volume production. An output power of 21.5 dBm at 35.4 GHz with a tuning range of 600 MHz has been achieved. Hundreds of these monolithic transmitters have been fabricated, and an RF yield of 40% has ben achieved from the GaAs MMIC pilot line based on the total number of wafers started. The high yield obtained from this high level integration of multifunctional MMIC chips indicates the maturity of the design and processing capability of millimeter-wave (MMW) GaAs MESFET technology  相似文献   

15.
A millimeter-wave IC dielectric resonator oscillator (DRO) is proposed. Equations that give the resonant frequency of the dielectric resonator DR in suspended stripline (SSL) are derived. A U-band voltage-controlled oscillator (VCO) with varactor tuning also has been developed. The Gunn diode and varactor used in both of the oscillators are commercially available packaged devices. Restrictions on the performance of the oscillators imposed by packaged and mounted networks and the self-characteristics of the solid-state devices have been analyzed. An electronic tuning range greater than 1000 MHz with an output power exceeding 15 dBm across the bandwidth in the 53-GHz region has been realized for the SSL VCO. An SSL DRO with an output power of more than 17 dBm and a mechanical tuning range of 1.5 GHz in the 54-GHz region has been achieved  相似文献   

16.
一种超宽带毫米波倍频器设计   总被引:1,自引:0,他引:1  
叙述了一种超宽带毫米波倍频器的设计,该倍频器由有源差分balun级、对管倍频级和分布式功率放大级三个部分组成。在30—50GHz输出频率范围内,倍频器具有5dB的变频增益,输出功率大于13dBm,基波抑制大于15dB。  相似文献   

17.
A detailed experimental comparison between double-drift-region (DDR) and single-drift-region (SDR) millimeter-wave avalanche diodes is presented. For 50-GHz CW operation, DDR diodes have given a maximum of 1-W output power compared to 0.53 W for the SDR diodes, while maximum efficiencies of 14.2 percent for the DDR and 10.3 percent for the SDR diodes have been obtained. These results are in agreement with the theory of Scharfetter et al. [1] for DDR IMPATT diodes. Both the DDR and SDR diode measurements were made on room temperature, metal heat sinks. The DDR diodes were shown to operate at significantly lower junction temperatures for the same value of output power, indicating a potential reliability advantage. Ion implantation was used to make the p drift region of the p+p-n-n+50-GHz DDR devices. Otherwise the fabrication (which includes diffusion and epitaxial technologies) and the microwave measurement methods were identical for both types of diodes. Capacitance measurements were compared with calculations to determine the desired doping concentrations for frequencies from 43 to 110 GHz. Experimental results for the higher frequency millimeter-wave region have been obtained on DDR structures with both p and n drift regions implanted. At 92 GHz an output power of 0.18 W and an efficiency of 7.4 percent have been obtained.  相似文献   

18.
A millimeter-wave power amplifier fabricated in 90 nm bulk CMOS technology consists of 3 identical cascode stages and on-chip matching networks (inter-stage, input, and output) implemented with wide-gap coplanar waveguides and M6-M5 (MIM) capacitors. The amplifier realizes a linear power gain of 19.7 dB at 52.4 GHz and 10.3 dB at 60 GHz. Maximum saturated output power and output-referred compression point are and 3.1 dBm, respectively. Peak PAE is 4.2%. The 1.180.96 die consumes 75 mA when operating from a 2 V supply.  相似文献   

19.
A novel circuit topology suitable for millimeter-wave voltage-controlled oscillators (VCOs) is presented. With the admittance-transforming technique, the proposed VCO can operate at a frequency close to the fmax of the transistors while maintaining remarkable circuit performance in terms of phase noise, tuning range, and output power. Using a standard micrometer CMOS process, a U-band VCO is implemented for demonstration. The fabricated circuit exhibits a frequency tuning range of 1.1 GHz in the vicinity of 50 GHz. The measured output power and phase noise at 1-MHz offset are -11 dBm and -101 dBc/Hz, respectively. Operated at a supply voltage of 1.8 V, the VCO core consumes a DC power of 45 mW.  相似文献   

20.
A compact integrated antenna with direct quadrature conversion circuitry for broad-band millimeter-wave communications is proposed. The conversion circuits include two even-harmonic mixers based on antiparallel diode pairs (APDPs). The equivalent circuit of the APDP derived here provides good agreement with the measured data from 17 to 23 GHz. Overall phase and amplitude imbalance between the in-phase/quadrature (I/Q) output channels are less than 1.2/spl deg/ and 1 dB at IFs of 10 and 100 MHz, respectively. An overall RF power conversion loss of 14.6 dB at the quadrature I/Q channels including the antenna is achieved in the frequency range from 39.75 to 40.25 GHz with a local oscillator (LO) power level of 11.8 dBm. LO leakages at 20 and 40 GHz are -31.5 and -44.8 dBm, respectively. In order to demonstrate the system capabilities for broad-band digital communication, a communication link is built with a pair of the proposed front-ends. Data transmission up to 1 Gb/s data rate for quadrature phase-shift keying modulation is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号