首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV.  相似文献   

2.
Cadmium sulfide films of different thicknesses were deposited by chemical bath deposition (CBD) from a bath containing cadmium chloride, ammonium chloride, ammonium hydroxide and thiourea. The XRD patterns show that the films have a hexagonal phase with a preferential (0 0 2) orientation. The photoluminescence spectra show a defect structure, characteristics of the CdS films obtained by CBD. The electrical behavior in dark and under illumination, the optical properties and the band gap value reported in this work is in agreement with that reported in the literature.  相似文献   

3.
Nickel oxide (NiOx) thin films were prepared by the chemical deposition method (solution growth) on two kinds of substrates: (1) glass and (2) glass/SnO2 : F. Films were thermally treated at 200°C for 10 min in atmosphere. The texture, microstructure and composition were examined by optical microscopy, X-ray diffraction patterns (XRD) and X-ray photoelectron spectroscopy (XPS) analysis of the surface layer. The films exhibited anode electrochromism. The optical properties of the bleached and colored state were examined with transmittance spectroscopy in the visible region and reflectance FTIR spectroscopy. An electrochromic test device (ECTD), consisting of SnO2/NiOx/NaOH–H2O/SnO2, was assembled and tested by cyclic voltammetry combined with a simultaneous recording of the change of transparency at λ=670 nm. The coloration efficiency was evaluated to be 24.3 cm2/C. The spontaneous ex-situ change of coloration with time of the colored and bleached NiOx/SnO2/glass was also examined.  相似文献   

4.
Polycrystalline copper oxide thin films are prepared at a reaction temperature above 280°C by an atmospheric-pressure chemical vapor deposition method. The source materials were copper dipivaloylmethanate and oxygen. It has been shown from the experiment that two kinds of films, i.e., Cu2O and CuO are grown by controlling oxygen partial pressure. A series of characterizations on the film quality by scanning electron microscope, X-ray photoelectron spectroscopy, X-ray diffraction and Fourier transform infrared spectrometer has been made, and the performance of solar thermal conversion are also identified on the produced films. Results show that the well-crystallized CuO film has lower infrared transmittances due to the scatterings of light through the optically anisotropic monoclinic structure.  相似文献   

5.
In this paper, growth and characterization of CdS thin films by Chemical Bath Deposition (CBD) technique using the reaction between CdCl2, (NH2)2CS and NH3 in an aqueous solution has been reported. The parameters actively involved in the process of deposition have been identified. A commonly available CBD system has been sucessfully modified to obtain the precious control over the pH of the solution at 90°C during the deposition and studies have been made to understand the fundamental parameters like concentrations of the solution, pH and temperature of the solution involved in the chemical bath deposition of CdS. It is confirmed that the pH of the solution plays a vital role in the quality of the CBD–CdS films. Structural, optical and electrical properties have been analysed for the as-deposited and annealed films. XRD studies on the CBD–CdS films reveal that the change in Cadmium ion concentration in the bath results in the change in crystallization from cubic phase with (1 1 1) predominant orientation to a hexagonal phase with (0 0 2) predominant orientation. The structural changes due to varying cadmium ion concentration in the bath affects the optical and electrical properties. Optimum electrical resistivity, band gap and refractive index value are observed for the annealed films deposited from 0.8 M cadmium ion concentration. The films are suitable for solar cell fabrication. Further on, annealing the samples at 350°C in H2 for 30 min resulted in an increased diffraction intensity as well as shifts in the peak towards lower scattering angles due to enlarged CdS unit cell. This in turn brought about an increase in the lattice parameters and narrowing in the band-gap values. The results are compared with the analysis of previous work.  相似文献   

6.
Water electrolysis for green hydrogen production is gaining tremendous attention in the quest towards sustainable energy sources. At the heart of water splitting technology are the electrocatalysts, which facilitate the two half-cell reactions, i.e., the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with the latter being the most thermodynamically uphill. Herein, we managed to fabricate Ni1-xFexO microflowers (μFs) with varying % of Fe doping (0 < x < 0.36) via an easy chemical bath deposition (CBD) method. The as-synthesized μFs drop-casted on graphene paper (GP) are then applied as electrocatalysts for OER. Compared to contrast catalysts, the electrocatalyst with xFe = 0.1 exhibits a lower overpotential of 297 mV at a current density of 10 mA cm−2, Tafel slope of 44 mV dec−1 and unprecedented turnover frequency of 4.6 s−1 at 300 mV. It is believed that this remarkable electrochemical performance mainly stems from the synergistic effects of Ni and Fe species, working in harmony to enhance charge transfer kinetics and intrinsic activity of the catalyst. This work provides a promising avenue for developing cost-effective and highly active electrocatalysts as advanced electrodes for energy related applications.  相似文献   

7.
Haining Chen 《Solar Energy》2010,84(7):1201-17
A suitable deposition method of CdS is necessary for the high performance CdS-sensitized ZnO electrodes. In this paper, chemical bath deposition (CBD) and sequential chemical bath deposition (S-CBD) methods were used to deposit CdS on ZnO mesoporous films for ZnO/CdS electrodes. The analysis results of XRD patterns and UV-vis spectroscopy indicated that CBD deposition method leaded to the dissolving of ZnO mesoporous films in deposition solution and thickness reduction of ZnO/CdS electrodes. Absorption in visible region by the ZnO/CdS electrodes with CdS deposition by S-CBD was enhanced as deposition cycles increased due to the stability of ZnO mesoporous films in the S-CBD deposition solutions. The results of photocurrent-voltage (I-V) measurement showed that the performance of ZnO/CdS electrodes with CdS deposition by CBD first increased and then decreased as deposition time increased, and the greatest short-circuit current (Jsc) was obtained at the deposition time of 4 min. The performance of ZnO/CdS electrodes with CdS deposition by S-CBD increased as deposition cycles increased, and both open-circuit voltage (Voc) and Jsc were greater than those electrodes with CdS deposition by CBD when the deposition cycles of S-CBD were 10 or greater. These results indicated that S-CBD is a more suitable method for high performance ZnO/CdS electrodes.  相似文献   

8.
CdS thin films were deposited by chemical bath deposition onto glass substrates from chemical bath containing cadmium sulfate, thiourea and ammonia at pH=10.5. The temperature of the bath was maintained at either 75°C or 85°C and under mill stirring. After that the samples were annealed in air at 450°C. Analysis of the as-deposited thin films by energy dispersive X-ray analysis showed that almost all samples have a stoichiometric composition. The morphology of CdS films has been investigated by atomic force microscopy. The structural properties were determined by XRD and a cubic zincblende phase was present in all of the as-grown samples. Evidence of a wurtzite phase appeared after annealing. Grain sizes between 85 and 205 Å were determined from the XRD diffraction peak broadening. The sizes increase with both bath temperature and annealing. The optical properties were studied measuring the transmittance spectra. The room-temperature bandgap energies for each sample were determined from the transmittance by two different methods: extrapolating absorption coefficient and first derivative peak position. The bandgap energy varies from 2.48 to 2.35 eV following closely the quantum confinement dependence of energy against crystallite radius. This shows that the absorption edges of these samples are determined primarily by the grain sizes.  相似文献   

9.
The chemical bath deposition method was used to deposit thin films of cuprous oxide. The effect of copper source and triethanolamine content on the optical, morphological, structural, electrochemical and photoelectrochemical properties of the thin films for the development of photocathodes for hydrogen production was investigated. Triethanolamine promotes the complexing of Cu+ ions independent of the copper source used, its increase promotes thicker films due to better growth control and reduction of rapid Cu2O precipitation in the bulk solution. The increase in thickness promoted a change in preferential orientation from (111) plane to (200) plane, which also influenced and reduced the conductivity because there is a decrease in disorder (Urbach energy EU). The thickness also varied due to copper source used, reaching the thickest films with copper nitrate while the thinnest films with copper acetate, this tendency is in agreement with their solubility in water. The lower solubility reduces the complexing of Cu + ions which promotes the Cu2O precipitation in the bulk solution, limiting the growth of the film. Also, electrical properties varied (measured as disorder EU) with copper source. The most conductive being the thin films deposited with copper acetate and nitrate while the most resistive being the films deposited with copper sulphate. Very little variation in optical properties was observed, estimating the band gap in the range of 2.62–2.66 eV, while high absorption coefficient (>105 cm?1) was calculated below the absorption edge (460–470 nm). All thin films showed p-type semiconducting behavior with a flat band potential in the range of ?0.10 to 0.18 V (Ag/AgCl sat electrode), which confirms their ability to work as photocathodes for hydrogen production. The best photoelectrochemical performance was observed with the thinnest films, which also are the most conductive and present the highest values of absorption coefficient.  相似文献   

10.
Usually as-grown chemical bath deposited Cadmium sulfide (CdS) samples do not show luminescence at room temperature because of the high density of recombination centers due to many defects generated during the growth process, particularly for chemical bath deposited CdS films. The change of the S/Cd ratio allows to control the density of defects giving rise to a better quality CdS films which can show luminescence at room temperature. Depending on the S/Cd ratio an evolution and improvement of the photoluminescence signal at room temperature is observed.  相似文献   

11.
Crystallinity of thin film polycrystalline silicon (poly-Si) grown by atmospheric pressure chemical vapor deposition has been investigated by X-ray diffraction measurement and Raman spectroscopy. Poly-Si films deposited at high temperatures of 850–1050°C preferred to 2 2 0 direction. By Raman spectroscopy, the broad peak of around 480–500 cm−1 belonged to microcrystalline Si (μc-Si) phase was observed even for the poly-Si deposited at 950°C. After high-temperature annealing (1050°C) 3 3 1 direction of poly-Si increased. This result indicates that the μc-Si phase at grain boundary became poly-Si phase preferred to 3 3 1 direction by high-temperature annealing. Effective diffusion length of poly-Si films deposited at 1000°C was estimated to be 11.9–13.5 μm and 10.2–12.9 μm before and after annealing, respectively.  相似文献   

12.
Polycrystalline CdS thin films have been deposited on borosilicate glass substrates coated with ITO film by metalorganic chemical vapor deposition using dimethyl cadmium and diethyl sulfide as source materials. The growth of CdS film occurred at substrate temperatures within the range of 280–360°C. The deposition rate increased with increasing VI/II molar ratio at any substrate temperature and showed a maximum value at the VI/II molar ratio of 4. The grain size of as-deposited CdS film prepared at substrate temperatures from 300°C to 360°C was about 0.1 μm. The CdS films consist of hexagonal form with a preferential orientation of the (0 0 2) plane parallel to the substrate. Thin CdS film with high optical transmittance was prepared at 350°C with the VI/II molar ratio of 4. The CdS film deposited by MOCVD may be used as a window layer for CdS/CdTe solar cell.  相似文献   

13.
In this paper we present the basic concepts underlying the chemical bath deposition technique and the recipes developed in our laboratory during the past ten years for the deposition of good-quality thin films of CdS, CdSe, ZnS, ZnSe, PbS, SnS, Bi2S3, Bi2Se3, Sb2S3, CuS, CuSe, etc. Typical growth curves, and optical and electrical properties of these films are presented. The effect of annealing the films in air on their structure and composition and on the electrical properties is notable: CdS and ZnS films become conductive through a partial conversion to oxide phase; CdSe becomes photosensitive, SnS converts to SnO2, etc. The use of precipitates formed during deposition for screen printing and sintering, in polymer composites and as a source for vapor-phase deposition is presented. Some examples of the application of the films in solar energy related work are presented.  相似文献   

14.
Electrochromic (EC) properties of sputtered Ni oxide films have been examined in 1 M KCl+H2SO4 acidic aqueous solutions with H2SO4 concentrations of 0–50 mM. EC coloration efficiency comparable to that in alkaline electrolytes was obtained in all the solutions and no remarkable degradation in charge capacity was observed up to 100 cycles. These results offer support for the practical construction of efficient complementary EC devices using dilute acidic aqueous electrolytes.  相似文献   

15.
The deposition of CdS films on ITO/glass substrates from a chemical bath containing cadmium acetate, ammonia, ammonium acetate and thiourea has been carried out with and without small amounts of heteropolyacids (HPA) (phosphotungstic acid (PTA): H3[PW12O40], silicotungstic acid (STA): H4[SiW12O40], phosphomolybdic acid (PMA): H3[PMo12O40]) and isopolyacids (IPA) (tungstic acid (TA): H2WO4 and molybdic acid (MA): H2MoO4) for different deposition times. The chemical, morphological, structural and optical properties of the films have been determined. The composition in sulphur and in cadmium of the films’ surface and volume was determined for various HPA and IPA used in the deposition bath. The HPA and IPA which give the thickest film with the biggest grain size were deduced. The optical transmission at 400 nm of CdS films deposited with STA at short time (20 min) (50%) is higher than those of CdS deposited at longer time (6 h) (7%). The optical transmission of CdS deposited with STA at short time is higher (50%) than that of CdS deposited without STA (20%). The performances of heterojunctions CdS/CdTe solar cells fabricated from CdS films deposited with and without STA and CdTe films deposited without STA have been determined. It was shown that the CdS/CdTe heterojunction solar cells fabricated from CdS films deposited with STA exhibited better photon collection efficiency and solar cell efficiency (η=6%) than CdS/CdTe heterojunction solar cells fabricated from CdS films deposited without STA (η=3.3%).  相似文献   

16.
17.
The production of hydrogen, the future fuel, on stable, efficient, and robust electrocatalysts represents an attractive approach for the conversion and storage of carbon-free energy resources. In this study, earth-abundant nickel sulfide (NiS) electrocatalyst were grown on fluorine-doped tin oxide (FTO) substrate by a simple and cost-effective chemical bath deposition for hydrogen evolution reaction (HER). Energy dispersive X-ray analysis and X-ray photoelectron spectra indicated the presence of highly pure NiS. The HER performance of the catalyst was examined in alkaline solution (1.0 M NaOH; pH = 13.5). Notably, NiS film prepared at 100 °C demonstrated superior HER activity with an overpotential of 290 mV to afford a current density of 10 mA/cm2 and a Tafel slope of 143.4 mV/dec which are among the promising results obtained for sulfide-based HER electrocatalysts. The catalyst exhibited 100% faradaic efficiency and electrochemical stability which indicate its potential as noble-metal-free HER electrocatalyst.  相似文献   

18.
We have investigated on the production of microcrystalline-silicon (μc-Si) films from solid Si sources by the chemical transport deposition, and could obtain photo-sensitive μc-Si films. The crystallinity and photo-sensitivity of μc-Si films are improved by increasing hydrogen pressure and the highest photo-sensitivity of 50 times is obtained at 200 Pa. The high density of atomic hydrogen probably causes the defect passivation in the high-pressure conditions. The distance between the Si target and the substrate is also important to improve the film properties, and a shorter distance is effective for higher deposition rate, crystallinity and photo-sensitivity.  相似文献   

19.
Copper indium selenide thin films were prepared through a novel and an eco-friendly selenisation process. In this method, selenium film required for selenisation was prepared using chemical bath deposition technique, at room temperature. Thus, totally avoided usage of highly toxic H2Se or selenium vapour. Here, the process involved annealing the Stacked layer, Se/In/Cu in which Cu and In were deposited using vacuum evaporation technique. Investigations on the solid-state reaction between the layers were done by analysing structural and optical properties of films formed at different annealing temperatures. Optimum annealing condition for the formation of copper indium selenide thin film was found to be 673 K for 1 h in high vacuum. Compositional dependence of the growth process was also studied using various Cu/In ratios. Optical band gap was decreased with increase in Cu/In ratio. Carrier concentration and hence conductivity were found to be increased with increase in Cu/In ratio. The films obtained were p-type and highly Cu-rich films were degenerate.  相似文献   

20.
BiVO4 films deposited on Fluorine doped tin oxide glass substrates were successfully prepared by a modified chemical solution deposition process. Structure and optical spectrum analysis show that the resultant BiVO4 films consist entirely of monoclinic scheelite structure and have a narrow band gap of ~2.66 eV. The films were investigated by photoelectrochemical and photovoltaic measurements with regard to hydrogen production and solar energy conversion under visible light. The BiVO4 photoanodes show significantly higher visible light induced photoelectrochemical performance (~1.1 mA/cm2 at 1.0 V vs. Ag/AgCl) than those reported ones, which is very promising for splitting water to H2 and O2. A Schottky BiVO4 solar cell was also investigated for comparison with photoelectrochemical measurements. The correlation between the photoelectrochemical and photovoltaic behavior for BiVO4 was explained. Our research should provide important support for the applications of BiVO4 films or its modified forms such as doping and nanocomposite in heterojunction photoelectrochemical cells and solar cells with suitable energy level alignment at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号