首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
奥-贝球铁焊缝的组织与力学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
用X射线衍射仪、光学显微镜和电子显微镜,系统地研究了球铁焊缝金属等温贝氏体转变过程,等温温度及等温时间对焊缝组织与力学性能的影响。研究结果表明,球铁焊缝金属贝氏体相变快,等温时间在15~240min范围内焊缝基体组织主要为贝氏体铁素体和残余奥氏体且具有高的综合力学性能。随着等温温度从310℃增至400℃,焊缝金属中残余奥氏体量增多,贝氏体铁素体条宽化,焊缝塑性提高,强度降低。  相似文献   

2.
针对某厂汽车发动机奥贝球铁齿轮材料,研究了等温淬火工艺对奥贝球铁组织和性能的影响。结果表明:经880℃奥氏体化+320℃等温淬火处理,可获得上贝氏体/下贝氏体的混合组织。该组织具有优良的综合机械性能,满足了汽车发动机齿轮的技术要求。  相似文献   

3.
9SiCr钢的两种退火组织   总被引:1,自引:1,他引:0  
惠树人 《热处理》2006,21(4):52-55
对9Sicr钢的两种贝氏体组织进行了亚温退火处理,观察和分析了退火后的球化组织与多边形化组织,介绍了特殊的淬火时效工艺与操作方法,根据系统热力学和现代物理冶金学原理探讨了9SiCr钢变态奥氏体(A2)和其贝氏体相变与贝氏体组织。  相似文献   

4.
采用不同温度奥氏体化+贝氏体转变温度范围等温+球化退火工艺,模拟了4Cr5Mo2V扁钢中AS14类退火组织形成过程。利用Leica光学显微镜观察显微组织,采用438VP/KEVEX扫描电镜/能谱仪对试样微区化学成分进行分析,并对不同组织状态扁钢的冲击性能进行了测试。结果表明,终锻温度偏高,锻后在贝氏体转变温度范围停留或缓慢冷却导致钢中形成粗大的竹叶状贝氏体组织;退火时碳化物沿粗大贝氏体组织界面形核长大,而竹叶之间析出碳化物较少,从而形成了AS14类退火组织;AS14类退火组织具有较强的组织遗传性,能够显著降低扁钢的横向冲击性能;较低的终锻温度和冷却过程避免在贝氏体转变温度区间停留或缓慢冷却,可以防止4Cr5Mo2V扁钢形成AS14类退火组织。  相似文献   

5.
奥氏体化温度对含钒贝氏体球铁组织和硬度的影响   总被引:1,自引:0,他引:1  
研究奥氏体化温度对含钒贝氏氏体球墨铸铁组织和性能的影响。研究结果表明,钒使贝氏体转变所要求的奥氏体化温度范围增大,并使贝氏体球铁的硬度提高。这一研究结果为在生产中使用含钒生铁,利用铸造余热进行贝氏体化热处理提供了依据。  相似文献   

6.
采用新型分级淬火工艺生产高硅贝氏体球铁,将试样奥氏体化后,人常温介质中分级淬火,使球铁在230℃箱式电炉中等温转变成贝氏体组织,与传统的盐浴等温淬火贝氏体球铁进行比较。利用SEM、硬度计、冲击试验机等分析测试技术,对材料的微观组织和力学性能进行了研究。结果表明:采用分级淬火工艺生产高硅贝氏体球铁时,在Si含量大于3.3wt%时,对贝氏体相变具有显著的诱发作用,从而使贝氏体球铁组织细化,力学性能提高(52—56HRC、αK达12—15J/cm^2),并对此进行了理论分析。  相似文献   

7.
探讨了铸态奥氏体-贝氏体球墨铸铁凝固后,奥氏体向贝氏体或马氏体转变的热力学和动力学条件,以及室温组织中存在的上贝氏体、下贝氏体、片状马氏体、针状马氏体和铁索体的形核和分布特点,着重阐述了所加入的合金元素对球铁中贝氏体形核的主要作用和机理,并探讨了当相、铜和硅含量一定时,镍含量对球铁力学性能的影响规律。  相似文献   

8.
奥-贝球铁焊缝的组织与力学性能   总被引:1,自引:1,他引:0       下载免费PDF全文
用X射线衍射仪,光学显微镜和电子显微镜,系统地研究了球铁焊缝金属等温贝氏体转变过程,等温温度等温时间为焊缝组织与力学性能的影响。研究结果表明,球铁焊缝金属贝氏体相变快,等温时间在15-240min范围内焊缝基体组织主要为贝氏体铁素体和残工体且具有高的综合力学性能。  相似文献   

9.
准铸态贝氏体低碳球铁的组织分析   总被引:1,自引:0,他引:1  
采用扫描电镜和X射线衍射仪对准铸态贝氏体低碳球铁的组织结构、断口形貌和微区成分进行了分析和研究。结果表明,经准铸态贝氏体工艺处理后,低碳球铁的基体组织以针状无碳贝氏体为主,并有25%~28%的奥氏体;准铸态贝氏体低碳球铁韧塑性的提高,与其组织中形成的大量奥氏体和镶嵌在当中的针状无碳贝氏体密切相关。  相似文献   

10.
通过试验研究了硼对贝氏体-马氏体抗磨球铁组织及性能的影响。试验结果表明;在正常球化元素含量(wB:0.035%-0.040%Mg,0.025%-0.030%RE)下,硼小于0.050%,可保证石墨球化。且随含硼量增加,材料硬度升高,冲击韧度下降。当硼含量为0.015%-0.030%时,材料获得了硬度和冲击韧度的良好匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号