首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shubo Deng  Qiang Yu  Gang Yu 《Water research》2010,44(18):5188-5195
Perfluorooctane sulfonate (PFOS) is a new persistent organic pollutant of substantial environmental concern, and its removal from industrial wastewater is critical to eliminate its release into water environment. In this paper, six anion exchange resins with different polymer matrix, porosity, and functional group were evaluated for PFOS removal from simulated wastewater. Resin matrix displayed significant effect on the sorption kinetics and capacity of PFOS, and the polyacrylic resins including IRA67 and IRA958 exhibited faster sorption and higher sorption capacity for PFOS than the polystyrene resins due to the hydrophilic matrix. Sorption isotherms illustrated that the sorption capacity of PFOS on IRA67 and IRA958 was up to 4-5 mmol/g, and the amount of PFOS sorbed on the resins was more than chloride released from resins, indicating that other interactions besides anion exchange were involved in the sorption. Solution pH had little impact on the sorption of PFOS on IRA958, but displayed significant effect on IRA67 at pH above 10 due to the deprotonation of amine groups. The coexisting sulfate and hexavalent chromium in wastewater interfered with the sorption of PFOS because of their competitive sorption on the exchange sites. The spent resins were successfully regenerated using the mixture of NaCl and methanol solution. This work provided an understanding of sorption behavior and mechanism of PFOS on different anion exchange resins, and should result in more effective applications of ion exchange for PFOS removal from industrial wastewater.  相似文献   

2.
Impregnated resins prepared by the immobilization of an ionic liquid (IL, Cyphos IL-101, tetradecyl(trihexyl)phosphonium chloride) into a composite biopolymer matrix (made of gelatin and alginate) have been tested for recovery of Bi(III) from acidic solutions. The concentration of HCl slightly influenced Bi(III) sorption capacity. Bismuth(III) sorption capacity increased with IL content in the resin but non-linearly. Maximum sorption capacity reached 110-130mgBig(-1) in 1M HCl solutions. The mechanism involved in Bi recovery was probably an ion exchange mechanism, though it was not possible to establish the stoichiometric exchange ratio between BiCl(4)(-) and IL. Sorption kinetics were investigated through the evaluation of a series of parameters: metal concentration, sorbent dosage, type and size of sorbent particles and agitation speed. In order to reinforce the stability of the resin particles, the IL-encapsulated gels were dried; this may cause a reduction in the porosity of the resin particle and then diffusion limitations. The intraparticle diffusion coefficients were evaluated using the Crank's equation. Additionally, the pseudo-first-order and pseudo-second-order equations were systematically tested on sorption kinetics. Metal can be desorbed from loaded resins using either citric acid or KI/HCl solutions. The sorbent could be recycled for at least three sorption/desorption cycles.  相似文献   

3.
Weak base phenol formaldehyde anion exchange resins were found to have an excellent capacity for removing the anionic organic species benzenesulfonate (BS), p-toluenesulfonate (PTS) and dodecylbenzenesulfonate (DBS) from pH 2 and 4 solutions. The capacity for DBS was generally greater than that of activated carbon and significantly greater than that of a polystyrene-divinylbenzene resin with no ion exchange functional groups. The maximum capacity of the weak base resins appeared to be limited by the exchange capacity of the resin. The mechanism of removal was strongly indicated as being either ion exchange at the amine functional groups in the acid form, or uptake of a proton by the amine groups in the free base form with the organic anion as the associated counter ion. Increasing concentrations of Cl decreased the amount of organic anion that could be sorbed.The swelling of one of the resins, Duolite A-7, also had a marked effect on its sorption capacity. The pores of the acid chloride or acid organic anion form of the resin were apparently larger than those of the free base form; thus, as conversion of the resin to the acid form took place, a greater amount of uptake was observed. The effect of swelling on the capacity of Duolite S-37 was much less, apparently owing to its larger pore structure, but its capacity for DBS at low pH was lower than that for A-7 because of its lower nitrogen content. Also, BS and DBS were easily removed from the weak base resins by washing them with NaOH. Four bed volumes of 1 m NaOH gave essentially complete regeneration of BS saturated A-7.  相似文献   

4.
《Water research》1986,20(2):221-232
The increase in nitrate concentration in public water supplies is becoming an important problem in certain countries. Among the treatment processes available, the removal of nitrates by ion exchange has been thoroughly studied in recent years with regard to problems of capacity and selectivity. The use of anionic resins in drinking water treatment imply that these compounds do not induce secondary degradation in the quality of the treated water.The purpose of this paper is to examine the chemical quality of water treated by a strong base ion exchange resin (IRA 400) regenerated by sodium chloride.Two sources of organic compounds can be found in water treated with a filter of ion exchange resin:The constitution monomers leached from IRA 400 (styrene, divinylbenzene, trimethylamine and their derivatives).The micropollutants liable to be adsorbed, desorbed or produced during the exhaustion cycles of denitratation.The evolution of the concentration synthesis monomers in treated water was studied during the conditioning and the exhaustion cycles of the resin. Moreover the adsorption isotherms of the IRA 400 for different kinds of micropollutants (aromatic compounds, chlorinated solvents, herbicides, nitrosamines) were determined and the concentration of an added micropollutant (phenol) was measured during an exhaustion cycle.As for the formation of organic compounds during the treatment, we have limited our study to the analysis of N-dimethylnitrosamine during the exhaustion cycle, since this compound has been detected in water demineralized by an ion exchange resin.  相似文献   

5.
Sterile, radiochemical procedures were applied in a study of the cationic exchange processes occurring during pyridine sorption onto highly-purified sodium kaolinite and sodium montmorillonite particulates of colloidal dimensions. Sodium desorption is directly related to increased protonation. Hydrogen ion exchange dominates at pH < 3. Maximum pyridium sorption occurs at pH 4.0–5.5. At pH > 7.0 neither pyridium nor hydrogen exchange occurs. Previously sorbed pyridium desorbs from the clays as a function of time and solution pH with maximum desorption at pH 1 and 11 and minimum near pH = pKa = 5.25. Pyridine desorption is much slower than sorption at comparable pH and clay:organic ratio. The extent of desorption is also directly related to the number of stages and/or the volume of solution. Particulate charge, zeta potential, changes are greatest between pH 1–4 with coagulation and charge reversal at pH ≅ 2 if the pyridine concentration is < cation exchange capacity, CEC. Pyridine concentration in excess of CEC induces coagulation through the “cage effect”.  相似文献   

6.
The complexing capacity of some drinking waters for aluminium(III) and copper(II) is determined by a ligand titration with metal ions based on the use of complexing resins. The resins used in the titration are the iminodiacetic resin Chelex 100, the carboxylic resin Amberlite CG50 and the anionic exchange resin AG1X8. They allow the detection of ligands forming complexes of different stability with the metal ions used for the titration, since they have different sorbing properties. After equilibration with the resin, the concentration of the free metal ion in solution is evaluated from the concentration of sorbed metal ion and from the quantity K*, which is the ratio of the concentration of the metal ion sorbed on the resin to the free metal ion in solution. It strongly depends on the conditions, but it can be evaluated, at the considered conditions, from the sorption equilibria of the metal ion on the resin. The concentration of the ligands in solution and the conditional stability constant are obtained from the Ruzik linearization procedure. Very strong ligands of copper(II) and aluminium(III) were detected in a tap water sample at concentrations ranging from 10−7 to 10−6 mol kg−1, and forming complexes having conditional complexation constants KcI=2.3×1017 (pH=6.77) and 4.5×1016 (pH=6.24), respectively, for copper(II) and aluminium(III). Weaker ligands were detected using the less strongly sorbing resins Amberlite CG50 and AG1X8, but at a concentration equal to that of the strong ligands. This was ascribed to the presence of competing metals in solution, not sorbed by the weak resins. Two other drinking waters had completely different complexing properties both towards copper(II) and aluminium(III), containing much weaker ligands.  相似文献   

7.
Liu CH  Wu JS  Chiu HC  Suen SY  Chu KH 《Water research》2007,41(7):1491-1500
Two commercial anion exchange membranes, strong basic (SB6407) and weak basic (DE81), were evaluated for the removal of anionic reactive dyes, Cibacron blue 3GA (three sulfonic acid groups per dye molecule) and Cibacron red 3BA (four sulfonic acid groups per dye molecule), from water in this study. The adsorption isotherm results show that the Langmuir maximum adsorption capacities of Cibacron blue 3GA (31.5mg/cm(3) for SB6407 and 25.5mg/cm(3) for DE81) were greater than those of Cibacron red 3BA (24.5mg/cm(3) for SB6407 and 18.5mg/cm(3) for DE81). For each reactive dye, the capacity for SB6407 was higher than DE81 based on the same membrane volume. However, consideration of the number of ion exchange sites interacting with a dye molecule indicates that the DE81 results are close to the theoretical values while the SB6407 membrane had some unused binding sites. In addition, Cibacron red 3BA demonstrated faster and stronger binding with both anion exchange membranes than Cibacron blue 3GA. Both dyes could bind with strong basic SB6407 more quickly and stronger. In the batch desorption process, different desorption solutions were tested and the mixtures of salt, acid, or base in methanol solution (e.g. 1N KSCN in 60% methanol or 1N HCl in 60% methanol) achieved better performance. Finally, in the flow process with one piece of anion exchange membrane (initial dye concentration of 0.05g/L), SB6407 was found superior to DE81 in dye recovery and both membranes retained their original uptake capacities over three cycles of adsorption, washing, and desorption.  相似文献   

8.
Pan B  Pan B  Chen X  Zhang W  Zhang X  Zhang Q  Zhang Q  Chen J 《Water research》2006,40(15):2938-2946
In the present study, polymer-supported zirconium phosphate (ZrP-CP) was prepared for selective removal of lead from the contaminated water. ZrP-CP was characterized using nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption on ZrP-CP was found to be pH dependent due to the ion- exchange mechanism. Also, ZrP-CP was proved to be more selective than the polystyrene strong-acid cation exchanger D-001 to remove lead ion from water, where other competing cations such as Na(+), Ca(2+), and Mg(2+) ions coexist at high concentrations. Generally, lead sorption isotherms on ZrP-CP can be divided into two distinct regions at different load levels, and isotherms at both regions can be well elucidated by Langmuir model. The distribution coefficients (K(d)) and binding constants (B(L)) obtained experimentally indicated that stronger sorption affinity of ZrP-CP towards the lead ion occurs at a relatively lower load level. Also, lead sorption onto ZrP-CP was found to be an endothermic and entropy-driven process. High selectivity of ZrP-CP towards the lead ion was possibly attributed to the crystal state of zirconium phosphate and a specific interaction between orthophosphate and lead ion. Fixed-bed column runs showed that lead sorption on ZrP-CP could result in a conspicuous decrease of this toxic metal from 0.5 mg/L to below 0.01 mg/L, which is recommended as the standard of drinking water by WHO (the treatment technique standard set by US EPA is 0.015 mg/L). Also, the spent sorbent can be readily regenerated for reuse by dilute HNO(3) or HCl solution.  相似文献   

9.
Laboratory tests and a field validation experiment were performed to evaluate anion exchange resins for uranium sorption and desorption in order to develop a uranium passive flux meter (PFM). The mass of uranium sorbed to the resin and corresponding masses of alcohol tracers eluted over the duration of groundwater installation are then used to determine the groundwater and uranium contaminant fluxes. Laboratory based batch experiments were performed using Purolite A500, Dowex 21K and 21K XLT, Lewatit S6328 A resins and silver impregnated activated carbon to examine uranium sorption and extraction for each material. The Dowex resins had the highest uranium sorption, followed by Lewatit, Purolite and the activated carbon. Recoveries from all ion exchange resins were in the range of 94-99% for aqueous uranium in the environmentally relevant concentration range studied (0.01-200 ppb). Due to the lower price and well-characterized tracer capacity, Lewatit S6328 A was used for field-testing of PFMs at the DOE UMTRA site in Rifle, CO. The effect on the flux measurements of extractant (nitric acid)/resin ratio, and uranium loading were investigated. Higher cumulative uranium fluxes (as seen with concentrations > 1 ug U/gram resin) yielded more homogeneous resin samples versus lower cumulative fluxes (<1 ug U/gram resin), which caused the PFM to have areas of localized concentration of uranium. Resin homogenization and larger volume extractions yield reproducible results for all levels of uranium fluxes. Although PFM design can be improved to measure flux and groundwater flow direction, the current methodology can be applied to uranium transport studies.  相似文献   

10.
The performance of a special class of grafted textiles in removing metal cations from industrial wastewaters was examined in continuous reactors. The influence of various parameters on the ion exchange process (reactor geometry, inlet metal ion concentration, solution flow rate, concentration and type of reagent, etc.) was studied over the complete service cycle of the exchanger (saturation, desorption, regeneration, rinsing). Dynamic ion exchange characteristics were determined and compared with those of resins under identical operating conditions. Higher efficiency of fibrous ion exchangers compared to analogous resins, was shown at all stages of the service cycle. Results were expressed as a function of breakthrough capacity, exchanger utilisation efficiency, volume of solution treated, eluted metal concentration. The use of different reactor geometries showed two of the many possible applications of grafted textiles in water treatment processes.  相似文献   

11.
Bicarbonate-form anion exchange: affinity, regeneration, and stoichiometry   总被引:1,自引:0,他引:1  
Rokicki CA  Boyer TH 《Water research》2011,45(3):1329-1337
Magnetic ion exchange (MIEX) is an effective process for removing dissolved organic carbon (DOC) from natural waters, but its implementation has been limited due to production of waste sodium chloride solution (i.e., brine) from the regeneration process. Chloride is of concern because elevated concentrations can have adverse effects on engineered and natural systems. The goal of this research was to explore the efficacy of using anion exchange resin with bicarbonate as the mobile counter ion, which would produce a non-chloride regeneration solution. It was found that bicarbonate-form MIEX resin had a similar affinity as chloride-form MIEX resin for sulfate, nitrate, DOC, and ultraviolet-absorbing substances. Both bicarbonate-form and chloride-form MIEX resins showed the greatest removal efficiencies as fresh resin, and removal efficiency decreased with multiple regeneration cycles. Nevertheless, sodium bicarbonate solution was as effective as sodium chloride solution at regenerating MIEX resin. Regeneration of the bicarbonate-form MIEX resin was illustrated by sparging carbon dioxide gas in a water/resin slurry. This regeneration process would eliminate the need for the addition of salts such as sodium chloride or sodium bicarbonate. The stoichiometry of the bicarbonate-form resin revealed that the bicarbonate was deprotonating within the resin matrix leading to a mixture of both carbonate and bicarbonate mobile counter ions. This work makes an important contribution to ion exchange applications for water treatment by evaluating the affinity, regeneration, and stoichiometry of bicarbonate-form anion exchange.  相似文献   

12.
After distinct selectivity evaluation of different anion resins for the sulphate-chloride and phosphate-chloride systems, resin affinities for the sulphate-phosphate system have been measured Experimental determinations show that selectivities are strongly dependent on resin basicity and solution pH.As for the basic causes of selectivity, both hydrostatic and electrostatic interactions appear to be determinant. The following overall selectivity sequence: phosphates > sulphates chlorides is demonstrated for commercial, weak base resins, with prevailingly IIary amino type functional groups.The dephosphation of conventionally treated urban sewages by resins of this type is proposed, using sodium chloride as regenerant.  相似文献   

13.
Cheng H  Sabatini DA 《Water research》2002,36(8):2062-2076
This research studied simultaneous uptake of anionic surfactants and micellar-solubilized organic contaminants by anion-exchange resins. Anionic surfactant molecules adsorbed onto the positively charged resin mainly through electrostatic attraction, while the micellar-solubilized contaminants were excluded from aqueous solutions once the remaining micelles could no longer solubilize them. Data suggest that the excess contaminants adsorbed onto the resin skeleton and admicelle layer formed on the resin surface through hydrophobic interactions and eventually partitioned into the resin gel phase matrix. In batch adsorption, the contaminant solubilization capacity did not decrease linearly with respect to surfactant concentration decrease due to the increased solution counterion activity during anion exchange, and caused "delayed" contaminant uptake relative to that of the surfactant. No such effect occurred in continuous column adsorption, where the surfactant and contaminant breakthrough occurred simultaneously. Surfactant head and tail group properties, along with resin structure and particle size significantly affected surfactant and contaminant uptake rates. Relative to recovering the surfactant, the high exchange potential of the anionic surfactant prevented effective surfactant desorption, even at high electrolyte concentration and in the presence of a cosolvent. The resin matrix also had high affinity for the partitioned contaminant, and the contaminant elution from the resin seemed to be controlled by equilibrium partitioning.  相似文献   

14.
A research on the isolation of organic pollutants from water is presented. Five macroporous anionic resins: Varion AT400, Asmit 229N, Zerolite 553N, Wofatite EA60 and Amberlite IR93 were used for humic substances and other anionic organics isolation. Varion AT400 resulted to be the best anionic resin (about 90% recovery of humic substances and a lower recovery for other anionic substances). Nearly complete desorption was achieved by NaCl/NaOH 10%/2% solution, at a volume of about 3.5 times the resin bed volume.  相似文献   

15.
This paper discusses the sorption performance of novel materials for the removal of lead(II) and copper(II) from near-neutral aqueous solutions. Active carbons with surface heteroatoms of oxygen and phosphorus have been prepared. The surface functional groups display weakly acidic ion exchange characteristics. The optimum solution pH for maximum metal sorption is related to the pK values of the surface functional groups. In oxygenated active carbons, pK values are not distinct but can be obtained by describing proton binding to the heterogeneous adsorbent surface as a continuous proton affinity distribution. Information derived from zeta-potential measurements combined with knowledge of the pK distribution function and concentration of surface functional groups has been used to explain the selectivity of oxidised active carbons towards lead(lI) in the presence of copper(II) from multi-metal bearing solutions. Marine algal-based biosorbents have been challenged with lead(II) and copper(II)-bearing wastewater. The weakly acidic carboxyl groups of structural polysaccharides present within the algal matrix display high sorption capacity for both metals. The negative surface charge of algal particles results in electrostatic interactions as well as coordination between metal species and the adsorbent surface. Proton affinity for the algal surface lowers the negative surface potential at pH values around 2. The surface functional groups in algae unlike those in oxidised active carbons may be represented by discrete acid-dissociation constant values. The influence of conformational differences in uronic-acid segments upon metal ion selectivity is discussed.  相似文献   

16.
Rengaraj S  Moon SH 《Water research》2002,36(7):1783-1793
The capacity of ion exchange resins, IRN77 and SKN1, for removal of cobalt from aqueous solution has been investigated under different conditions namely initial solution pH, initial metal-ion concentration, and contact time. The equilibrium data obtained in this study have been found to fit both the Langmuir and Freundlich adsorption isotherms. The adsorption of Co(II) on these resins follows first-order reversible kinetics. The film diffusion of Co(II) in these ion exchange resins was shown to be the main rate limiting step. The studies showed that these cation exchange resins can be used as efficient adsorbent material for the removal of Co(II) from aqueous solutions.  相似文献   

17.
Removal of THM precursors by coagulation or ion exchange   总被引:3,自引:0,他引:3  
Bolto B  Dixon D  Eldridge R  King S 《Water research》2002,36(20):331-5073
The removal of natural organic matter (NOM) from drinking water supplies can be achieved by different processes, among them coagulation and adsorption. Synthetic waters made from concentrates of humic substances from reservoir and river waters were tested in the laboratory for ease of removal of NOM by coagulation with cationic organic polymers and with alum, and by adsorption on anion exchangers. For polymers such as high molecular weight polydiallyldimethylammonium chloride (polyDADMAC) and cationic polyacrylamides of high charge, performance was nearly as effective as alum, with colour removals 86–100% of those obtained for alum. Ion exchange using the best commercially available resins designed for this purpose, a gel polystyrene and a macroporous acrylic resin, was more effective than alum treatment for two of the natural waters studied, but inferior for a third. The resins were overall superior to cationic polymers.

The NOM was separated into four fractions based on hydrophobic and hydrophilic properties. Alum was not as effective as ion exchange for the elimination of individual ionic NOM fractions. It was better than cationic polymers for removal of humic and fulvic acids, although polyDADMAC was as good for one water. For the removal of charged compounds alum then polyDADMAC were the best performers for that water. Unequivocal evidence was obtained that coagulants remove material that is not adsorbed by resins, and vice versa. A combination of coagulation with a cationic polymer and adsorption by an anion exchanger removed essentially all of the NOM. The preference of the coagulants was for the larger, more hydrophobic molecules, and of resins for smaller highly charged hydrophilic molecules. Each fraction had trihalomethane formation potentials in the range 11–24 μg/mg, except for one water that was more reactive. Hence, the actual amount of each fraction in the original water becomes a crucial factor.  相似文献   


18.
One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol–water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Experiments with ketoprofen, in addition to diclofenac, suggest that polystyrene anion exchange resins can be used to selectively remove other acidic pharmaceuticals from urine.  相似文献   

19.
Using the method of impedance spectroscopy we have investigated charge selectivity of macroporous inorganic membranes modified with nanoparticles of the inorganic ion exchanger—hydrated zirconium dioxide, which displays anion-exchange properties in an acid area. It has been found that transfer numbers of the SO4 2? reach 0.81–0.9 at the H2SO4 concentration 10 mol · m?3 and decrease as the acid concentration in solution goes down. It has also been found that modified membranes demonstrate a two-fold decrease of the diffusion coefficient of H2SO4 compared with a free solution. It has been shown that charge selectivity of the membrane improves as the amount of the ion exchanger in the matrix increases.  相似文献   

20.
《Water research》1996,30(8):1851-1857
Experiments were conducted to investigate the ammonia, nitrite and nitrate removal from aqueous solution using ozonation and ion exchange. The operating variables of the combined ozonation and ion exchange processes include the pH, initial concentration of nitrogenous compounds and flow rate of aqueous solution. The effects of those variables on the removal efficiencies of the nitrogeneous compounds by ozonation, or ion exchange or both were explored. Ozonation was found able to completely convert nitrite to nitrate. However its capability of ammonia removal is much limited. The anionic and cationic ion exchange resins were able to efficiently remove nitrate and residual ammonia. An optimal operating range of OH for ammonia removal by the combined ozonation and ion exchange was obtained. However, removal of nitrite and/or nitrate by combined ozonation and ion exchange was found to be relatively insensitive to pH. It was observed that the combined process is capable of efficiently maintaining the nitrogeneous compounds in the aqueous solution at very low concentration levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号