共查询到20条相似文献,搜索用时 46 毫秒
1.
针对以生产周期、生产成本、设备利用率为目标的柔性作业调度问题,基于混合遗传箅法提出了一种新的优化求解方法.首先建立了该类问题的调度模型,对于工序编码的染色体决定了工序调度的优先级;利用无量纲的标准化处理方法统一目标量纲;然后,利用层次分析法将多目标问题转化为单目标问题,同时为了保证箅法的收敛性,在基本遗传算法框架的基础上集成了禁忌搜索算法,从而延缓或避免了早熟收敛的发生.最后通过实验仿真,证明提出的方法可以有效解决该类多目标柔性作业调度问题. 相似文献
2.
分布式车间作业计划与调度是一个典型的组合优化问题,而组合优化问题是遗传算法求解的领域。该文描述了分布式车间作业调度问题及其调度方法,结合分布式车间生产模式的实际情况,将模拟退火算法引入自适应遗传算法,提出了混合遗传算法(GASA);详细地阐述了分布式车间作业计划与调度问题的解决策略和操作过程,并以甘特图的方式给出了计算结果。与其他方法比较,混合遗传算法是解决分布式车间作业计划与调度问题的更为优良的方法。 相似文献
3.
4.
机车车辆行业作为典型的面向订单的机械制造企业,优化的生产调度方法能提高订单的准时交货,缩短产品的生产周期,提高企业的市场竞争力。订单生产调度问题是典型的NP-hard问题。遗传算法(Genetic Algorithms)为求具有多个约束的复杂问题提供了有效的方法。但是遗传算法的局部搜索能力比较差,在解决订单生产调度问题中存在着明显的不足。本文引入了局部搜索能力很强的禁忌搜索算法,用遗传算法和禁忌搜索算法相结合的混合遗传算法来解决机车车辆行业中面向订单生产调度问题。 相似文献
5.
王玉芳;姚彬彬;陈凡;曾亚志 《计算机工程与设计》2024,45(10):3143-3152
考虑航空复合材料柔性车间调度中的运输约束,以最小化完工时间为目标,建立调度模型,提出一种改进的双种群混合遗传算法进行求解。根据问题特点,基于工序排序、机器选择和运输约束3个子问题,设计三层实数编码以及对应解码方案。采用混合初始化提高种群质量,进化过程中采用交叉算子执行全局搜索,为双种群设计基于机器负载平衡和变邻域的局部搜索,提高全局和局部搜索能力。与对比算法相比10个测试算例中BPRD指标取得9个最优,APRD指标全部取得最优,t检验显著性有明显差异,验证算法的优越性。将算法应用于航空复合材料车间中,实现实际生产的调度,验证算法的可行性。 相似文献
6.
7.
8.
随着设备的维修、维护和大修(Maintenance, Repair& Overhaul,MRO)规模扩大,设备的维修和维护越来越难,成本越来越高,MRO服务企业需要更加科学合理地调配资源,这就带来了MRO服务调度问题。为此本文提出了一种基于混合遗传-蚁群算法的MRO调度方法。建立了维修服务调度问题数学模型,采用混合遗传-蚁群算法对模型求解,以综合适应值最小为优化目标,得出最优调度方案,解决了MRO服务调度问题。最后,以某航天企业的10个维修任务为例,比较了本文提出的基于混合遗传-蚁群算法的调度方法与常规遗传算法、蚁群算法的优化结果,结果表明两种算法结果一致,且基于遗传-蚁群算法的调度方法收敛速度更快,从而验证了本文方法的可行性。 相似文献
9.
混合遗传算法求解配送车辆调度问题 总被引:2,自引:0,他引:2
车辆调度优化是物流配送的关键环节。针对有时间窗的车辆调度问题,综合考虑了路网中的交通状况,提出改进的车辆调度模型。并针对这个模型,设计了混合遗传算法,采用自适应策略调整交叉和变异概率,引进有效的交叉和变异算子,并结合模拟退火算法缓解遗传算法的选择压力,避免早熟收敛。仿真结果表明该算法与标准遗传算法相比有更好的性能。 相似文献
10.
以最优或近似最优的作业顺序编制满足关键资源约束的生产计划优化问题一直是企业生产管理中重要的研究课题之一。文章提出了一种基于传统启发式规则的混合遗传算法。该算法将染色体分为两段,前段表示资源安排策略,后段表示为优先分配规则序列,并设计了一种新的交叉算子。最后,介绍了根据此算法编制的一个制造企业生产控制的软件系统。 相似文献
11.
提出了基于遗传算法的均热炉装炉出炉调度的方法,并在调度目标中增加了对装炉优先级和过均热禁忌度等因素的考虑。仿真结果表明,该调度结果优于目前普遍使用的调度方法。这种方法能减轻调度人员劳动强度,并在一定程序上改善均热炉生产调度的性能。 相似文献
12.
Fernando Guedan-Pecker;Cristian Ramirez-Atencia; 《Expert Systems》2024,41(8):e13565
This research addresses the crucial issue of pollution from aircraft operations, focusing on optimizing both gate allocation and runway scheduling simultaneously, a novel approach not previously explored. The study presents an innovative genetic algorithm-based method for minimizing pollution from fuel combustion during aircraft take-off and landing at airports. This algorithm uniquely integrates the optimization of both landing gates and take-off/landing runways, considering the correlation between engine operation time and pollutant levels. The approach employs advanced constraint handling techniques to manage the intricate time and resource limitations inherent in airport operations. Additionally, the study conducts a thorough sensitivity analysis of the model, with a particular emphasis on the mutation factor and the type of penalty function, to fine-tune the optimization process. This dual-focus optimization strategy represents a significant advancement in reducing environmental impact in the aviation sector, establishing a new standard for comprehensive and efficient airport operation management. 相似文献
13.
为了求解车间调度这一NP问题,提出了基于动态疫苗库的免疫遗传算法。本算法改变了以往的基于工序的编码方式,采用基于优先权的编码方式,设计了相应的交叉和变异方式。同时,在不断地调整基因库和进行疫苗接种的过程中来判断基因库中基因片段的优劣,以此来不断动态地调整疫苗库,使得更好的疫苗进入疫苗库中,更好地指导种群的进化。仿真实验表明,该算法是高效的。 相似文献
14.
We study the problem of scheduling n preemptable jobs in a two-machine flow shop where the first machine is not available for processing during a given time interval. The objective is to minimize the makespan. We propose a polynomial-time approximation scheme for this problem. The approach is extended to solve the problem in which the second machine is not continuously available. 相似文献
15.
多阶段混合Flow Shop调度问题及其遗传求解算法 总被引:5,自引:0,他引:5
针对多阶段混合Flow Shop 调度问题的一般结构和不同的调度目标函数,提出混合整数规划模型,并基于问题的结构特点设计了遗传求解算法。计算实验结果表明,遗传算法对于不同规模和结构的问题具有良好的适应性和求解性能 相似文献
16.
Chie-Wun Chiou 《International journal of systems science》2014,45(3):384-398
A few prior studies noticed that an in-line stepper (a bottleneck machine in a semiconductor fab) may have a capacity loss while operated in a low-yield scenario. To alleviate such a capacity loss, some meta-heuristic algorithms for scheduling a single in-line stepper were proposed. Yet, in practice, there are multiple in-line steppers to be scheduled in a fab. This article aims to enhance prior algorithms so as to deal with the scheduling for multiple in-line steppers. Compared to prior studies, this research has to additionally consider how to appropriately allocate jobs to various machines. We enhance prior algorithms by developing a chromosome-decoding scheme which can yield a job-allocation decision for any given chromosome (or job sequence). Seven enhanced versions of meta-heuristic algorithms (genetic algorithm, Tabu, GA–Tabu, simulated annealing, M-MMAX, PACO and particle swarm optimisation) were then proposed and tested. Numerical experiments indicate that the GA–Tabu method outperforms the others. In addition, the lower the process yield, the better is the performance of the GA–Tabu algorithm. 相似文献
17.
自动化制造单元调度算法综述* 总被引:1,自引:0,他引:1
作为未来先进制造系统的重要发展方向,自动化制造单元(robotic cells)在半导体和印刷电路板制造、化学电镀、钢铁冶炼和机械制造等行业获得了日趋广泛的应用。为全面总结自动化制造单元调度算法的研究现状,对自动化制造单元进行分类,在此基础上综述了国内外自动化制造单元调度方法取得的进展及存在的问题,并指明了其进一步的研究方向。 相似文献
18.
Ultraviolet is a constraint satisfaction algorithm intended for use in interactive graphical applications. It is capable of solving constraints over arbitrary domains using local propagation, and inequality constraints and simultaneous linear equations over the reals. To support this, Ultraviolet is a hybrid algorithm that allows different subsolvers to be used for different parts of the constraint graph, depending on graph topology and kind of constraints. In addition, Ultraviolet and its subsolvers support plan compilation, producing efficient compiled code that can be evaluated repeatedly to resatisfy a given collection of constraints for different input values. 相似文献
19.
Lars Vestergaard Kragelund 《Software》1997,27(10):1121-1134
All over the world, human resources are used on all kinds of different scheduling problems, many of which are time-consuming and tedious. Scheduling tools are thus very welcome. This paper presents a research project, where Genetic Algorithms (GAs) are used as the basis for solving a timetabling problem concerning medical doctors attached to an emergency service. All the doctors express personal preferences, thereby making the scheduling rather difficult. In its natural form, the timetabling problem for the emergency service is stated as a number of constraints to be fulfilled. For this reason, it was decided to compare the strength of a Co-evolutionary Constraint Satisfaction (CCS) technique with that of two other GA approaches. Distributed GAs and a simple special-purpose hill climber were introduced, to improve the performance of the three algorithms. Finally, the performance of the GAs was compared with that of some standard, nonGA approaches. The distributed hybrid GAs were by far the most successful, and one of these hybrid algorithms is currently used for solving the timetabling problem at the emergency service. © 1997 John Wiley & Sons, Ltd. 相似文献
20.
Parallel machine scheduling problems using memetic algorithms 总被引:2,自引:0,他引:2
In this paper, we investigate how to apply the hybrid genetic algorithms (the memetic algorithms) to solve the parallel machine scheduling problem. There are two essential issues to be dealt with for all kinds of parallel machine scheduling problems: job partition among machines and job sequence within each machine. The basic idea of the proposed method is that (a) use the genetic algorithms to evolve the job partition and then (b) apply a local optimizer to adjust the job permutation to push each chromosome climb to his local optima. Preliminary computational experiments demonstrate that the hybrid genetic algorithm outperforms the genetic algorithms and the conventional heuristics. 相似文献