首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neodymium (Nd)‐based Ziegler–Natta catalyst has been well known for preparing polybutadiene rubber (BR) containing high, about 98%, cis−1,4 configuration with extremely low gel content providing superior resistance to low‐temperature fatigue and abrasion. However, its cost is more expensive than a conventional nickel (Ni)‐based catalyst. The Nd‐BR has poor processability with high cold flow due to its high linearity and molecular weight. To compare with a traditional process, the BR produced by Ni‐based catalyst has higher level of branching resulting in the better processability, but it contains medium amount of gel. To balance the catalyst cost and the BR properties, this article reported the influence of a solution containing Ni‐ and Nd‐based Ziegler–Natta catalyst (Ni/Nd) using diethyl aluminum chloride and triethyl aluminum as co‐catalysts on 1,3‐butadiene (BD) conversion and physical properties of the elastomeric materials based on obtained rubber (Ni/Nd‐BR). In the presence of toluene, the increase in the Ni/Nd molar ratio from 0.0/1.0 to 0.4/0.6 yielded Ni/Nd‐BR containing cis−1,4 units of 95%–96% with significantly decreasing both levels of vinyl−1,2 and trans−1,4 configurations from 0.26% to 0.13% and 4.44% to 3.07%, respectively. When cyclohexane was applied as the reaction media, 100% BD conversion was achieved and the Ni/Nd‐BR had very low content of vinyl−1,2 unit (0.07%). The mechanical properties in terms of tensile properties and abrasion resistance of the elastomer based on Ni/Nd‐BR having high cis‐1,4 and relatively higher trans−1,4 configurations were superior to elastomers based on commercial BRs produced by using Ni‐ and Nd‐based catalyst systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41834.  相似文献   

2.
在甲苯溶液中,用固体光气为原料,分别与正己胺和正辛胺在0~5℃反应,中间产物在70℃以上分解合成异氰酸酯,常压蒸馏除去甲苯,减压蒸馏得到正己基和正辛基异氰酸酯。加入少量氢化钙能够降低异氰酸酯的三聚成环副反应,正己基和正辛基异氰酸酯收率分别达72.5%和77.9%,折光指数分别为1.4203和1.4298,纯度达99.0%以上。  相似文献   

3.
Polymerizing 1,3‐butadiene into syndiotactic 1,2‐polybutadiene with an iron(III) catalyst system has been investigated. Activity of the catalyst was affected by the type of cocatalyst alkylaluminum and the phosphorus compound as an electron donor, molar ratio of catalyst components, and their aging sequence and aging time of the catalyst. The microstructure and configuration of the polymer was decided by the catalyst components, the higher [Al]/[Fe] molar ratio tending to yield syndiotactic 1,2‐polybutadiene, while the higher [P]/[Fe] molar ratio favors the formation of amorphous 1,2‐polybutadiene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4265–4269, 2006  相似文献   

4.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

5.
The separation of blends of styrene-butadiene rubber and butyl rubber is accomplished by liquid chromatography at the critical point of adsorption. Using a non-polar stationary phase and methyl ethyl ketone-cyclohexane as the eluent, the critical point of adsorption of polybutadiene is established. Under these chromatographic conditions, the blends are separated regardless of the molar masses of the components. The exact chemical structure of the blend components can be analysed by coupling the chromatographic separation to FTIR detection. The FTIR spectra of the components reveal information on the styrene and butadiene content and the conformation of the butadiene units (1,2-, 1,4-cis, 1,4-trans units). Poorly soluble high molar mass samples are separated by combining critical separation with a gradient elution technique.  相似文献   

6.
Among Ziegler‐Natta catalysts used for 1,3‐butadiene (1,3‐BD) polymerization, the advantage of a neodymium (Nd)‐based catalyst is that it provides butadiene rubber (BR) with a high content of cis?1,4 configuration and a low amount of vinyl?1,2 units. Whereas, a cobalt (Co)‐based catalyst can produce BR with a low content of trans?1,4 configuration. Thus, this research was aimed to prepare BR containing a high content of cis?1,4 configuration with low amounts of both trans?1,4 and vinyl?1,2 units using a combination of Nd‐ and Co‐based Ziegler/Natta catalysts with triethyl aluminum (TEAL) and diethyl aluminum chloride (DEAC) acting as a co‐catalyst and a chlorinating agent, respectively. The effects of the molar Co/Nd ratio, TEAL concentration, DEAC loading, 1,3‐BD content, solvent type, and reaction temperature on % conversion, microstructures, molecular weight, and molecular weight distribution of the obtained BR (Co/Nd‐BR) were evaluated. The Co/Nd‐BR having >97% of cis?1,4 configuration, <2% of trans?1,4 structure, and <1% of vinyl?1,2 unit with >80% conversion was achieved when 3.01 M of 1,3‐BD concentration was treated in a toluene/cyclohexane mixture (7/3 [w/w]). The Co/Nd‐BR exhibited no gel formation with high mechanical performance, which was equivalent to commercial BR produced from a Nd‐based catalyst system. POLYM. ENG. SCI., 55:14–21, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
在三(2-乙基己基)磷酸酯钕的己烷溶剂中加入少量二氯二甲基硅烷,对其在己烷溶剂中形成的低聚物解缔合,制备出溶液型磷酸酯钕。以溶液型磷酸酯钕Nd(P_(204))_3(简称Nd)/烷基铝(简称Al)/氯化合物(简称Cl)催化体系催化异戊二烯聚合,考察了不同烷基铝、氯源种类、Al/Nd、Cl/Nd及聚合温度对异戊二烯聚合的影响。结果表明,用Nd/Al(i-Bu)_3/Al(i-Bu)_2Cl催化体系制备的聚合物相比于Nd/Al(i-Bu)_2H/Al(i-Bu)_2Cl体系具有更高的分子量,两种催化体系均可制得具有高顺式-1,4-结构含量、窄分子量分布的聚异戊二烯。  相似文献   

8.
The gas phase polymerization of 1,3‐butadiene (Bd), with supported catalyst Nd(naph)3/Al2Et3Cl3/Al(i‐Bu)3 or/and Al(i‐Bu)2H, was investigated. The polymerization of Bd with neodymium‐based catalysts yielded cis‐1,4 (97.2–98.9%) polybutadiene with controllable molecular weight (MW varying from 40 to 80 × 104 g mol?1). The effects of reaction temperature, reaction time, Nd(naph)3/Al(i‐Bu)3 molar ratio, and cocatalyst component on the catalytic activity and molecular weight of polymers were examined. It was found that there are two kinds of active sites in the catalyst system, which mainly influenced the MW and molecular weight distribution of polybutadiene. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1945–1949, 2004  相似文献   

9.
杜晓晗 《化学世界》2012,(3):169-171
以柠檬酸和2-乙基己醇为原料,用氧化二正丁基锡为催化剂合成了无毒增塑剂柠檬酸三(2-乙基)己酯,考察了反应温度、催化剂用量、醇酸摩尔比、反应时间等因素对反应结果的影响,对合成的产品进行了红外光谱分析。实验结果表明,氧化二正丁基锡催化合成柠檬酸三(2-乙基)己酯的最佳反应条件为n(柠檬酸)∶n(2-乙基己醇)=1∶3.60,催化剂用量为柠檬酸质量的0.5%,反应时间为120min,反应温度为150~160℃,在最佳反应条件下,柠檬酸三(2-乙基)己酯收率在98%以上。  相似文献   

10.
High‐cis polybutadiene produced by catalyst systems based on a rare earth is an elastomer used to produce green tires. This type of tire presents lower rolling resistance, which allows higher fuel economy, and thus fewer chemical compounds are discharged into the atmosphere. In this work, the influence of electron donors [tetrahydrofuran (THF) and tetramethylethylenediamine (TMEDA)] present in the polymerization solvent on the microstructure and molecular weight characteristics of the polybutadiene produced by neodymium catalysts was studied. The catalyst synthesis was carried out in glass bottles for 1 h at a temperature between 5 and 10°C. The catalyst components were diisobutylaluminum hydride, neodymium versatate, and tert‐butyl chloride. The polymerization reaction was carried out for 2 h. The reaction temperature was kept at 70± 3°C. The addition of TMEDA or THF above a determined concentration reduced the catalytic activity, molecular weight, and concentration of cis‐1,4 units (<96%), whereas the polydispersity increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2539–2543, 2005  相似文献   

11.
Summary: Me2Si(Ind)2ZrCl2 was in situ immobilized onto SMAO and used for ethylene and propylene polymerization in the presence of TEA or TIBA as cocatalyst. The catalytic system Me2Si(Ind)2ZrCl2/SMAO exhibited different behavior depending on the amount and nature of the alkylaluminum employed and on the monomer type. The catalyst activity was nearly 0.4 kg polymer · g cat?1 · h?1 with both cocatalysts for propylene polymerization. Similar activities were observed for ethylene polymerization in the presence of TIBA. When ethylene was polymerized using TEA at an Al/Zr molar ratio of 250, the activity was 10 times higher. Polyethylenes made by in situ supported or homogeneous catalyst systems had practically the same melting point (Tm). On the other hand, poly(propylenes) made using in situ supported catalyst systems had a slightly lower Tm than poly(propylenes) made using homogeneous catalyst systems. The nature and amount of the alkylaluminum also influenced the molar mass. The poly(propylene) molar mass was higher when TIBA was the cocatalyst. The opposite behavior was observed for the polyethylenes. Concerning the alkylaluminum concentration, the molar mass of the polymers decreased as the amount of TEA increased. In the presence of TIBA, the polyethylene's molar mass was almost the same, independent of the alkylaluminum concentration, and the poly(propylene) molar mass increased with increasing amounts of cocatalyst. The deconvolution of the GPC curves showed 2 peaks for the homogeneous system and 3 peaks for the heterogeneous in situ supported system. The only exception was observed when TEA was used at an Al/Zr molar ratio of 500, where the best fit was obtained with 2 peaks. Based on the GPC deconvolution results and on the theoretical modeling, a proposal for the active site structure was made.

Molar mass distribution deconvolution of polyethylene prepared with the system Me2Si(Ind)2ZrCl2/SMAO/TIBA with 500 mol/mol of alkylaluminum as cocatalyst.  相似文献   


12.
A series of rubber composites with ultra high cis polybutadiene (UBR), NUC1–3, SBC1–4, SUS1–4, was prepared, and their vulcanized properties were measured and analyzed. The ultra high cis polybutadiene was prepared with the monomeric neodymium catalyst, Nd(neodecanoate)3·(neodecanoic acid). NUC composites were composed of natural rubber, ultra high cis polybutadiene, and carbon black. In the composite of a low carbon black content (NUC1, 45 phr), a high abrasion‐resistance and a significantly low rolling resistance (tan δ60°C, 0.04) were obtained. According to the AFM study of NUC composites, abrasion resistance was closely related with surface morphology. In the SUS composites prepared with SSBR (solution styrene–butadiene copolymer), UBR, and silica, as the content of ultra high cis polybutadiene increased, Δcure torque (MHML) increased with fast cure kinetics. SUS4 showed high elongation and tensile strength with excellent abrasion resistance. Rolling resistance was improved as the content of ultra high cis polybutadiene increased. The SBC composites were prepared with SBR (emulsion styrene–butadiene copolymer), ultra high cis polybutadiene (or high cis polybutadiene), and carbon black. It is remarked that abrasion resistance and Δtan δ (tan δ 60°C ? tan δ0°C) are increased with ultra high cis polybutadiene. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
The sequential block copolymerization of styrene (St) and butadiene (Bd) was carried out with an activated rare earth catalyst composed of catalyst neodymium tricarboxylate (Nd), cocatalyst Al(i‐Bu)3 (Al), and chlorinating agent (Cl). The microstructure, composition, and morphology of the copolymer were characterized by FTIR, 1H NMR, 13C NMR, and TEM. The results show that styrene–butadiene diblock copolymer with high cis‐1,4 microstructure of butadiene units (~ 97 mol %) was synthesized. The cis‐selectivity for Bd units was almost independent on the content of styrene units in the copolymer ranging from 18.1 mol % to 29.8 mol %. The phase‐separated morphology of polystyrene (PS) domains of about 40 nm tethered by the elastomeric polybutadiene (PB) segments is observed. The PS‐bcis‐PB copolymer could be used as an effective compatilizer for noncompatilized binary PS/cis‐PB blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
The effects of aluminum alkyls on the gas‐phase ethylene homopolymerization and ethylene/1‐hexene copolymerization over polymer‐supported metallocene/methylaluminoxane [(n‐BuCp)2ZrCl2/MAO] catalysts were investigated. Results with triisobutyl aluminum (TIBA), triethyl aluminum (TEA), and tri‐n‐octyl aluminum (TNOA) showed that both the type and the amount of aluminum alkyl influenced the polymerization activity profiles and to a lesser extent the polymer molar masses. The response to aluminum alkyls depended on the morphology and the Al : Zr ratio of the catalyst. Addition of TIBA and TEA to supported catalysts with Al : Zr >200 reduced the initial activity but at times resulted in higher average activities due to broadening of the kinetic profiles, i.e., alkyls can be used to control the shape of the activity profiles. A catalyst with Al : Zr = 110 exhibited relatively low activity when the amount of TIBA added was <0.4 mmol, but the activity increased fivefold by increasing the TIBA amount to 0.6 mmol. The effectiveness of the aluminum alkyls in inhibiting the initial polymerization activity is in the following order: TEA > TIBA >> TNOA. A 2‐L semibatch reactor, typically run at 80°C and 1.4 MPa ethylene pressure for 1 to 5 h was used for the gas‐phase polymerization. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3549–3560, 2004  相似文献   

15.
Propylene homopolymerizations were carried out with rac‐dimethylsilylenebis(indenyl)zirconium dichloride, methylaluminoxane‐modified silica, and common alkylaluminum cocatalysts. Supported catalysts were prepared by the in situ immobilization technique. The effects of the type and concentration (Al/Zr = 40–1000) of alkylaluminum on the propylene polymerization were evaluated with triethylaluminum (TEA), isoprenylaluminum (IPRA), and triisobutylaluminum (TIBA) as cocatalysts. The polymers were analyzed by gel permeation chromatography, differential scanning calorimetry, and 13C‐NMR. The polypropylene molar mass varied according to the nature of the alkylaluminum in the following order: TIBA > IPRA > TEA > no alkylaluminum. The polymers made with an in situ supported catalyst had lower crystallinities and melting points than the ones produced by homogeneous polymerization. The isotacticity was not affected by the polymerization conditions examined in this investigation. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1050–1055, 2005  相似文献   

16.
制备了1,4-丁烯二醇/顺丁烯二酸酐和端羟基聚丁二烯(HTPB)/顺丁烯二酸酐酯化物吸氧剂,讨论了反应时间及醇酐比对吸氧剂酯化率的影响,并且将1,4-丁烯二醇/顺酐、HTPB/顺酐吸氧剂接枝共聚到PET中得到改性吸氧材料。考察了两种吸氧材料的物理性能和吸氧性能,以及影响吸氧性能的双键保留率,催化剂用量、醇酐比。实验表明,顺酐与1,4-丁烯二醇、HTPB反应的最佳酯化时间分别为2 h和3 h,含1,4-丁烯二醇/顺酐和HTPB/顺酐的吸氧材料最大数均分子量分别为3.66万和4.97万,最大双键保留率分别为77.4%和76.3%,最大催化剂用量为1.0 g/kg,含1,4-丁烯二醇/顺酐和HTPB/顺酐的吸氧材料24 h最大吸氧量为3.17 mL/g和10.04mL/g。  相似文献   

17.
The addition variation, 1,2 and 1,4 units, and the geometrical isomerism, 1,4-cis and 1,4-trans units, of a fractionated polybutadiene were determined as a function of molecular weight using preparative gel permeation chromatography followed by infrared analysis of the fractions. Both the addition variation and geometrical isomerism remained essentially constant across the molecular weight distribution.  相似文献   

18.
Polyethylene/clay (PE/Clay) nanocomposites were prepared by the in situ polymerization of ethylene using the new Clay/butyl octyl magnesium (BOM)/Chloroform/EtOH/TiCl4/tri ethyl aluminum (TEA) catalyst system in heptane where BOM and TEA were the support for the clay modification and cocatalyst, respectively. The influence of the modified clay using BOM on the catalyst and polymerization was investigated. Also, the effect of temperature, pressure, hydrogen, and the molar ratios of TEA/Ti on the catalyst yield and ethylene consumption (polymerization rate) were studied. It was found that the above clay‐supported catalyst was an efficient Ziegler–Natta type catalyst due to its suitable yield for the polymerization of ethylene toward the production of the PE/Clay nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A series of high trans-1,4-low-cis-1,4-high trans-1,4-stereotriblock polybutadienes (HTPB-b-LCPB-b-HTPBs) were synthesized through a sequential anionic polymerization of butadiene (Bd) initiated by barium salt of di(ethylene glycol) ethylether/triisobutylaluminium/dilithium (BaDEGEE/TIBA/DLi). The polymers consisted of elastic low-cis-1,4-polybutadiene (LCPB) chemically bonded with crystallizable high trans-1,4-polybutadiene (HTPB). The block ratios (HTPB:LCPB:HTPB) were designed at 25:50:25 (molar ratio) and finally determined by SEC. The microstructures and sequences of the specimens were investigated by FTIR and NMR. The resultant HTPB-b-LCPB-b-HTPBs consisted of LCPB block with 52.5% trans-1,4 content and HTPB block with 55.9–85.8% trans-1,4 content. According to differential scanning calorimetry (DSC), HTPB-b-LCPB-b-HTPB showed a significant cold crystallization which was discussed in terms of entanglement concept. The cold crystallization temperature (Tcc) decreased whereas the melting temperature (Tm) increased with the increasing trans-1,4 content of HTPB block.  相似文献   

20.
Copolymerization of styrene (St) and butadiene (Bd) with CpTiCl3/methylaluminoxane (MAO) catalyst in the presence or absence of chloranil (CA) was investigated. The CpTiCl3/MAO catalyst showed a high activity for the copolymerization of St with Bd. The 1,4‐cis contents in the Bd units for the copolymerization of St and Bd with the CpTiCl3/MAO catalyst was observed, and the 1,4‐cis content was optimum at a MAO/Ti mole ratio of around 225. The effect of the polymerization temperature on the copolymerization was noted, as was the effect of the 1,4‐cis microstructure in the Bd units for the copolymerization of St and Bd. The addition of CA to the CpTiCl3/MAO catalyst was found to influence the molecular weight of the copolymer. The high weight‐average molecular weight copolymer (Mw = ca. 50 × 104) consisting of mainly a 1,4‐cis microstructure of Bd units (1,4‐cis = 80.0%) was obtained from the copolymerization with the CpTiCl3/MAO catalyst in the presence of CA (CA/Ti mole ratio = 1) at 0°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2942–2946, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号