首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sub‐seabed geological storage of CO2 in the form of gas hydrate is attractive because clathrate hydrate stably exists at low temperature and high pressure, even if a fault occurs by diastrophism like a big earthquake. For the effective design of the storage system it is necessary to model the formation of CO2‐hydrate. Here, it is assumed that the formation of gas hydrate on the interface between gas and water consists of two stages: gas diffusion through the CO2‐hydrate film and consequent CO2‐hydrate formation on the interface, between film and water. Also proposed is the presence of a fresh reaction interface, which is part of the interface between the gas and aqueous phases and not covered with CO2‐hydrate. Parameters necessary to model the hydrate formation in sand sediment are derived by comparing the results of the present numerical simulations and the measurements in the literature.  相似文献   

2.
CO2 hydrate formation experiments are performed in a 20 L semi‐batch stirred tank reactor using three different impellers (a down‐pumping pitched blade turbine, a Maxblend?, and a Dispersimax?) at various rotational speeds to examine the impact of the flow conditions on the CO2 hydrate formation rate. An original mathematical model of the CO2 hydrate formation process that assigns a resistance to each of its constitutive steps is established. For each experimental condition, the formation rate is measured and the rate‐limiting step is determined on the basis of the respective values of the resistances. The efficiencies of the three considered impellers are compared and, for each impeller, the influence of the rotational speed on the rate‐limiting step is discussed. For instance, it is shown that a formation rate limitation due to heat transfer can occur at the relatively small scale used to perform our experiments. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4387–4401, 2015  相似文献   

3.
Stabilizing atmospheric CO2 concentration requires the development of novel methods for capturing it in the form of permanent reservoirs. Among the proposed methods is CO2 storage in the form of hydrate. In this study a method was established for CO2 conversion to hydrate. This method can be applied to bioethanol plants, which produce CO2 as a by-product of ethanol fermentation. In this regard, a tubular recirculating flow reactor was developed for the study of CO2 hydrate formation. The experiments were carried out at 279 K and 3.5–5 MPa to determine the rate of CO2 hydrate formation. Further, a model was developed for prediction of the rate of hydrate formation based on the mass transfer, crystallization, and thermodynamic concepts. The predicted hydrate formation rate was compared to the experimental data in order to validate the model prediction. The predicted results were in good agreement with the experimental data at different operating conditions.  相似文献   

4.
Hydrate-based desalination could be a promising technique for producing fresh water from saline water, as it is an eco-friendly process and suitable for large-scale implementation. To make the hydrate-based desalination technology easily scalable, we looked at using air (or N2) or CO2 as a hydrate former, along with cyclopentane (CP). Hydrate former CP helps to reduce the operating conditions, as CP forms hydrate at ambient pressure. However, hydrate formation kinetics due to water-insoluble CP is slow. In this work, the kinetics of hydrate formation in saline water were investigated and compared to identify the utility of CO2 and N2 as hydrate formers for desalination work. The addition of CP as a hydrate former should transform the structure of CO2 hydrate from structure I (sI) to structure II (sII), as CP occupies the large cages (51264) in the gas hydrate. A set of three similar reactors were used for this study to collect data quickly. Furthermore, the triple reactor setup is a unique reactor design mounted on a shaker, and a set of SS-316 balls present inside the horizontal reactor imparts the mixing. Experiments with the CO2-CP mixture and N2-CP mixture have been studied in the presence or absence of 3 wt.% NaCl at 274 K and 3 MPa pressure. The gas uptake kinetics, water recovery, and separation efficiency have been investigated.  相似文献   

5.
A 2D CFD simulation of the carbonation reactor is carried out to evaluate the performance of potassium‐based dry sorbent during the CO2 capture process. A multiscale drag coefficient model is incorporated into the two‐fluid model to take the effects of clusters into account. The influence of several parameters on CO2 removal is investigated. The results indicate that increasing the reactor height and reducing the gas velocity can lengthen the residence time of particles and enhance the CO2 removal. The operating pressure has a significant influence on the performance of solid sorbents. A higher pressure will decrease the CO2 removal efficiency.  相似文献   

6.
The paper takes into consideration a new approach for CO2 capture and transport, based on the formation of solid CO2 hydrates.Carbon dioxide sequestration from power plants can take advantage of the properties of gas hydrates. The formation and decomposition of hydrates from various N2-CO2 mixtures has been studied experimentally in a 2 l reactor, to determine the CO2 separation in terms of hydrate composition and residual CO2 content in the reacted gas.Carbon dioxide acts as a co-former for the production of hydrates containing nitrogen, besides CO2. The mixed hydrates that are obtained are less stable than simple CO2 hydrates. When CO2 content in the flue gas is higher than 30% by volume, the hydrates formed at 5 MPa are sufficiently concentrated (about 70% CO2) and carbon dioxide reduction in the reacted gas is acceptable.The application of a process based on hydrate formation could be especially interesting (for CO2 capture and transport) when connected to an oxy-coal combustion process; in this case the CO2 content in the flue gas is very high and the hydrate formation is greatly facilitated.  相似文献   

7.
Gas hydrate/clathrate hydrate formation is an innovative method to trap CO2 into hydrate cages under appropriate thermodynamic and/or kinetic conditions. Due to their excellent surface properties, nanoparticles can be utilized as hydrate kinetic promoters. Here, the kinetics of the CO2 + tetra‐n‐butyl ammonium bromide (TBAB) semi‐clathrate hydrates system in the presence of two distinct nanofluid suspensions containing graphene oxide (GO) nanosheets and Al2O3 nanoparticles is evaluated. The results reveal that the kinetics of hydrate formation is inhibited by increasing the weight fraction of TBAB in aqueous solution. GO and Al2O3 are the most effective kinetic promoters for hydrates of (CO2 + TBAB). Furthermore, the aqueous solutions of TBAB + GO or Al2O3 noticeably increase the storage capacity compared to TBAB aqueous solution systems.  相似文献   

8.
The objective of this work is the prediction of induction time (ti) for simple gas hydrate formation in the presence or absence of kinetic hydrate inhibitors at various conditions based on the Kashchiev and Firoozabadi model in a flow mini‐loop apparatus. For this purpose, the ti model is developed for simple gas hydrate formation in batch system for natural gas components during hydrate formation in a flow mini‐loop apparatus. A laboratory flow mini‐loop apparatus is designed and built up to measure the ti for simple gas hydrate formation when a hydrate former (such as C1, C3, CO2 and i‐C4) is contacted with water in the absence or presence of dissolved inhibitor, such as poly vinylpyrrolidone, PVCap and L ‐tyrosine. In each experiment, a water blend saturated with pure gas is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of the required gas make‐up. The average absolute deviation (AAD) of the predicted ti values from the corresponding experimental data are found to be about 11% and 9.4% for gas hydrate formation ti in the presence or absence of kinetic hydrate inhibitors, respectively. © 2012 Canadian Society for Chemical Engineering  相似文献   

9.
A new 750 cm3 pilot test rig based on the “isochoric pressure method” was designed and commissioned for the hydrate measurements to concentrate sucrose solutions. The reactor included an improved agitation system and enabled sampling of the sucrose solutions. The experimental method was validated be performing dissociation measurements for the CO2 + water system. Gas hydrate kinetic and sampling data were measured for the CO2 + sucrose solutions at sucrose concentrations between (12–60) oBrix, within the temperature range of (274.65–276.15) K and at pressures up to 3.70 MPa. Results showed that sucrose is a kinetic inhibitor. The data were modeled to obtain hydrate formation rate, storage capacity, gas consumption and apparent rate constant. Stage-wise concentration measurements were performed with reactor conditions at 274.65 K, 3.70 MPa and 130 rpm mixer speed with liquid sample withdrawal. A final sucrose product of approximately 60 oBrix was obtained.  相似文献   

10.
The direct recovery of methane from gas hydrate‐bearing sediments is demonstrated, where a gaseous mixture of CO2 + N2 is used to trigger a replacement reaction in complex phase surroundings. A one‐dimensional high‐pressure reactor (8 m) was designed to test the actual aspects of the replacement reaction occurring in natural gas hydrate (NGH) reservoir conditions. NGH can be converted into CO2 hydrate by a “replacement mechanism,” which serves double duty as a means of both sustainable energy source extraction and greenhouse gas sequestration. The replacement efficiency controlling totally recovered CH4 amount is inversely proportional to CO2 + N2 injection rate which directly affecting solid ‐ gas contact time. Qualitative/quantitative analysis on compositional profiles at each port reveals that the length more than 5.6 m is required to show noticeable recovery rate for NGH production. These outcomes are expected to establish the optimized key process variables for near future field production tests. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1004–1014, 2015  相似文献   

11.
《分离科学与技术》2012,47(15):2498-2506
ABSTRACT

A series of experiments on CO2 hydrate formation were carried out in the presence of titanium dioxide (TiO2), silicon dioxide (SiO2), multi-walled carbon nanotubes (MWNTs) nanoparticles. The effects of these nanoparticles on induction time, final gas consumption, and gas storage capacity have been investigated at the temperature of 274.15 K and the initial pressure of 5.0 MPa.g. The induction time of CO2 hydrate formation was remarkably shortened to 12.5 min in the presence of 0.005 wt% MWNTs nanoparticles. The high thermal conductivity and heat capacity of MWNTs nanoparticles presented better heat transfer, and large surface area provided more suitable sites for heterogeneous nucleation of CO2 hydrate.  相似文献   

12.
Hydrate additives can be used to mitigate hydrate formation conditions, promote hydrate growth rate and improve separation efficiency. CO2 + N2 and CO2 + CH4 systems with presence of sodium dodecyl sulfate (SDS) or tetrahydrofuran (THF) are studied to analyze the effect of hydrate additives on gas separation performance. The experiment results show that CO2 can be selectively enriched in the hydrate phase. SDS can speed up the hydrate growth rate by facilitating gas molecules solubilization. When SDS concentration increases, split and loss fraction increase initially and then decrease slightly, resulting in a decreased separation factor. The optimum concentration of SDS exists at the range of 100–300 ppm. As THF can be easily encaged in hydrate cavities, hydrate formation condition can be mitigated greatly with its existence. Additionally, THF can also strengthen hydrate formation. The THF effect on separation performance is related to feed gas components. CO2 occupies the small cavities of type II hydrate prior to N2. But the competitiveness of CO2 and CH4 to occupy cavities are quite fair. The variations of split fraction, loss fraction and separation factor depend on the concentration of THF added. The work in this paper has a positive role in flue gas CO2 capture and natural gas de-acidification.  相似文献   

13.
The power‐to‐gas process is an option to transform fluctuating renewable electric energy into methane via water electrolysis and subsequent conversion of H2 by methanation with CO2. The dynamic behavior of the methanation reactor may then be a critical aspect. The kinetics of CO2 methanation on a Ni‐catalyst were determined under isothermal and stationary conditions. Transient isothermal kinetic experiments showed a fast response of the rate on step changes of the concentrations of H2, CO2; in case of H2O, the response was delayed. Non‐isothermal experiments were conducted in a wall‐cooled fixed‐bed reactor. Temperature profiles were measured and the effect of a changing volumetric flow was studied. The experimental data were compared with simulations by a transient reactor model.  相似文献   

14.
The dynamics of the replacement of CH4 in hydrate in porous sediments with liquid CO2 was investigated using a self‐developed experimental apparatus at different temperatures and initial pressures. The pressure increases steadily as the replacement reaction processes. The amount of the replaced CH4 is almost the same as that of the CO2 forming hydrate in the early stage and gradually becomes somewhat less in the later stage. The initial pressure has minor effects on the replacement rate, and temperature reduction causes a lower replacement rate. The experimental results suggest that the replacement rate is not related to the region of the temperature‐pressure conditions but is mainly affected by the fugacity differences of CH4 hydrate decomposition and CO2 hydrate formation.  相似文献   

15.
In the production of higher hydrocarbons, combining oxidative coupling of methane (OCM) with hydrogenation of the formed carbon oxides in a separate reactor provides an alternative to the currently applied methane conversion to syngas followed by Fischer‐Tropsch synthesis. The effects of CH4:O2 feed ratio in the OCM reactor and partial pressures of H2 or/and H2O in the hydrogenation reactor were analyzed to maximize production of C2+ hydrocarbons and reduce COx formation. The highest C2+ yield was achieved with low CH4:O2 feed ratio for OCM and removal of the formed water before entering the hydrogenation reactor.  相似文献   

16.
Gas hydrates from CO2/N2 and CO2/H2 gas mixtures were formed in a semi-batch stirred vessel at constant pressure and temperature of 273.7 K. These mixtures are of interest to CO2 separation and recovery from flue gas and fuel gas, respectively. During hydrate formation the gas uptake was determined and the composition changes in the gas phase were obtained by gas chromatography. The rate of hydrate growth from CO2/H2 mixtures was found to be the fastest. In both mixtures CO2 was found to be preferentially incorporated into the hydrate phase. The observed fractionation effect is desirable and provides the basis for CO2 capture from flue gas or fuel gas mixtures. The separation from fuel gas is also a source of H2. The impact of tetrahydrofuran (THF) on hydrate formation from the CO2/N2 mixture was also observed. THF is known to substantially reduce the equilibrium formation conditions enabling hydrate formation at much lower pressures. THF was found to reduce the induction time and the rate of hydrate growth.  相似文献   

17.
The formation process of CO2 drops in various types of Kenics Static Mixers was analyzed from the perspective of energy dissipation in the mixer, focusing on the formation of drop surfaces. Experimental studies on CO2 drop formation were conducted under varying temperatures, pressure, and flow rates, with and without hydrate formation. Analysis of the CO2 drop size and distribution at several locations within the static mixer was conducted, as of pressure drop in the mixer, to determine dissipation energies. In all the experimental conditions, by considering the surface energy for hydrate formation, the energy required for the formation of CO2 drops correlated well with total energy dissipation by mixer flow, which is represented by a pressure drop along the mixer. This process has important applications to the formation of liquid CO2 for ocean disposal as a countermeasure to global warming. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

18.
The objective of this work is the evaluation of the blocking risk of pipelines by hydrate crystals in processing steps. Two topics were investigated: (I) hydrate formation during pressure release and isochore cooling and (II) the influence of a contact surface on hydrate formation. The investigated materials were steel, glass, and polytetrafluoroethylene (PTFE). Experiments were carried out in a 87 mL view‐cell to observe hydrate formation in the bulk CO2 phase, since crystals of that size can cause the problems mentioned. The starting conditions of all experiments were within the temperature range of T = 278–285 K and the pressure range of p = 6–20 MPa. The results of the experiments suggest that the major criterion for hydrate formation during pressure release is the degree of supersaturation. Visible hydrate formation can be observed at a minimum subcooling of ΔT = 7 K. With a starting temperature of T = 285 K and a starting pressure of p = 6 MPa no hydrate formation is observed. The surface properties of the material have no direct influence on the hydrate formation process. However, during pressure release hydrate crystals detach from hydrophobic materials like PTFE, whereas they stick to hydrophilic materials like glass and steel. Thus, the adhesion between hydrate crystals and hydrophilic surfaces is stronger than between hydrate crystals and hydrophobic surfaces.  相似文献   

19.
In this work, nonequilibrium thermodynamics and phase field theory (PFT) has been applied to study the kinetics of phase transitions associated with CO2 injection into systems containing CH4 hydrate, free CH4 gas, and varying amounts of liquid water. The CH4 hydrate was converted into either pure CO2 or mixed CO2?CH4 hydrate to investigate the impact of two primary mechanisms governing the relevant phase transitions: solid‐state mass transport through hydrate and heat transfer away from the newly formed CO2 hydrate. Experimentally proven dependence of kinetic conversion rate on the amount of available free pore water was investigated and successfully reproduced in our model systems. It was found that rate of conversion was directly proportional to the amount of liquid water initially surrounding the hydrate. When all of the liquid has been converted into either CO2 or mixed CO2?CH4 hydrate, a much slower solid‐state mass transport becomes the dominant mechanism. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3944–3957, 2015  相似文献   

20.
In the current work, molecular dynamics simulation is employed to understand the intrinsic growth of carbon dioxide and methane hydrate starting from a seed crystal of methane and carbon dioxide respectively. This comparison was carried out because it has relevance to the recovery of methane gas from natural gas hydrate reservoirs by simultaneously sequestering a greenhouse gas like CO2. The seed crystal of carbon dioxide and methane hydrate was allowed to grow from a super-saturated mixture of carbon dioxide or methane molecules in water respectively. Two different concentrations (1:6 and 1:8.5) of CO2/CH4 molecules per water molecule were chosen based on gas–water composition in hydrate phase. The molecular level growth as a function of time was investigated by all atomistic molecular dynamics simulation under suitable temperature and pressure range which was well above the hydrate stability zone to ensure significantly faster growth kinetics. The concentration of CO2 molecules in water played a significant role in growth kinetics, and it was observed that maximizing the CO2 concentration in the aqueous phase may not result in faster growth of CO2 hydrate. On the contrary, methane hydrate growth was independent of methane molecule concentration in the aqueous phase. We have validated our results by performing experimental work on carbon dioxide hydrate where it was seen that under conditions appropriate for liquid CO2, the growth for carbon dioxide hydrate was very slow in the beginning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号