首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brewer's spent grain (BSG) hydrolysates were used for l ‐(+)‐lactic acid (LA) fermentation by Lactobacillus rhamnosus ATCC 7469. In this study the effect of the addition of various amounts of thin stillage (TS) in BSG hydrolysate on LA fermentation parameters were evaluated. TS addition significantly increased utilization of glucose by up to 43.0%. In batch fermentation the highest LA concentration and volumetric productivity of 31.0 g/L, and 0.93 g/L/h, respectively, were obtained with the addition of 50% TS. L. rhamnosus cell viability also increased with the addition of 50% TS (by 2.4%). TS addition significantly increased free amino nitrogen concentration (by up to 209%) which is important for bacterial growth. A strong positive correlation between free amino nitrogen and LA concentration was noted. Compared with the results obtained in the batch fermentation (50% TS), significantly higher LA concentration, yield and volumetric productivity (54.8, 1.9 and 4.0%, respectively) were achieved in fed‐batch fermentation with glucose and TS addition. The results suggest that the combination of the by‐products of brewing and bioethanol industries could be suitable for LA production. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

2.
The application of by‐products from the brewing industry in lactic acid (LA) production was investigated in order to replace expensive nitrogen sources (such as yeast extract) with cheaper and renewable nitrogenous materials such as brewer's yeast (BY). In this study, brewer's spent grain (BSG) hydrolysate was used for L‐(+)‐LA fermentation by Lactobacillus rhamnosus ATCC 7469. The effect of pH control during the fermentation and the addition of various BY contents (5–50 g/L) in BSG hydrolysate on fermentation parameters was evaluated. BY addition significantly increased free amino nitrogen (FAN) concentration (by 25.2% at 5 g/L to 616% at 50 g/L). A strong positive correlation between FAN concentration in the hydrolysate and concentration of L‐(+)‐LA produced was observed (correlation coefficient of 0.913). A high cell viability of L. rhamnosus ATCC 7469 (1.95–3.32 × 109 CFU/mL at the end of fermentation) was achieved in all fermentations with the addition of brewer's yeast. The addition of BY increased L‐(+)‐lactic acid yield and volumetric productivity up to 8.4% (5 g/L) and 48.3% (50 g/L). The highest L‐(+)‐LA yield (89%) and volumetric productivity (0.89 g/L h?1) were achieved in fermentation of BSG hydrolysate with 50 g/L of BY. © 2019 The Institute of Brewing & Distilling  相似文献   

3.
Lactic acid (LA) is a versatile chemical with a wide range of applications in food, pharmaceutical, cosmetic, textile and polymer industries. Brewer's spent grain (BSG) is the most abundant brewing by‐product. In this study BSG hydrolysates were used for LA fermentation by Lactobacillus rhamnosus ATCC 7469. The aim of this study was to evaluate the effects of pH control during fermentation, reducing sugar content and yeast extract content in BSG hydrolysate on LA fermentation parameters. The pH control greatly increased reducing sugar utilization, l ‐(+)‐LA content, yield and volumetric productivity. The highest l ‐(+)‐LA yield and volumetric productivity were achieved with the reducing sugar content of 54 g/L. Yeast extract addition significantly increased reducing sugar utilization, l ‐(+)‐LA content, L. rhamnosus cell viability, l ‐(+)‐LA yield and volumetric productivity. The highest l ‐(+)‐LA content (39.38 g/L), L. rhamnosus cell viability (9.67 log CFU/mL), l ‐(+)‐LA yield (91.29%) and volumetric productivity (1.69 g/L/h) were achieved with the reducing sugar content of 54 g/L and yeast extract content of 50 g/L. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

4.
The hemicellulosic fraction of brewer's spent grain (BSG) was hydrolysed with diluted acid under different conditions of liquid/solid ratio (8–12 g g−1), sulfuric acid concentration (100–140 mg g−1 dry matter) and reaction time (17–37 min) in order to produce a liquor with a large amount of xylose and good fermentability to produce xylitol. Results showed that all the evaluated reaction conditions were able to hydrolyse xylan and arabinan with efficiencies higher than 85.8 and 95.7% respectively, and even under the mildest reaction condition a considerable amount (92.7%) of the hemicellulosic fraction could be extracted. The hydrolysates presented different fermentabilities when used as fermentation media for xylitol production by Candida guilliermondii yeast, owing to the differences in their composition. Based on statistical analysis, the best condition for BSG acid hydrolysis was the use of a liquid/solid ratio of 8 g g−1, 100 mg H2SO4 g−1 dry matter and a reaction time of 17 min. Under this condition a high extraction efficiency of hemicellulosic sugars (92.7%) and good fermentation results (YP/S = 0.70 g g−1 and QP = 0.45 g dm−3 h−1) were attained. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
The aim of this study was to evaluate the bioconversion efficiency of rich in cellulose agro‐industrial by‐products such as wheat bran (WB), spent distiller's grain with solids (DGS), brewer's spent grain (BSG) and lupin (Lupinus angustifolius L.) wholemeal fraction (LF) to lactic acid (LA) using acid tolerant lactic acid bacteria (LAB) strains Lactobacillus sakei KTU05‐06, Pediococcus acidilactici KTU05‐7 and P. pentosaceus KTU05‐9. Carbohydrase preparation Depol? 692L was used for the hydrolysis of non‐starch polysaccharides. Analysed raw materials were suitable substrates for LAB propagation and L‐lactic acid production. The lowest pH (3.6) was found in LF medium after 48 h fermentation with P. acidilactici and P. pentosaceus strains. The lowest pH (3.86) was measured in WB fermented with L. sakei, and in DGS and BSG (pH 3.8 and 3.9 respectively) fermented with P. acidilactici. The highest endoxylanase activity was excreted by the P. acidilactici and P. pentosaceus (84 and 69 XU g?1 respectively), and the highest α‐amylase activity was of L. sakei (255.6 AU g?1) after 24 h incubation in WB medium. The L‐lactic acid concentration of 86.11 g kg?1 was reached after the bioconversion of hydrolysed WB in combination with 48 h fermentation by P. pentosaceus KTU05‐9 strain. LA contents between 222 and 282 mg kg?1 was produced from lupin processing residues via fermentation using P. acidilactici and P. pentosaceus KTU05‐9 strains. The major challenge within the presented study is the viability of tested LAB in cereal waste media and effective LA production at a low pH (3.63.8).  相似文献   

6.
商曰玲  范莹  余岚  余晓红 《中国酿造》2022,41(12):68-73
该研究采用传统培养分离法从啤酒糟中分离细菌,通过形态观察及分子生物学技术对其进行菌种鉴定,选择其中3株细菌发酵啤酒糟,并与常规发酵真菌黑曲霉(Aspergillus niger)和出芽短梗霉(Aureobasidium pullulans)对比,以期获得对啤酒糟降解效果较好的细菌。结果表明,从啤酒糟中共分离得到6株细菌(编号为B1~B6),经鉴定,分别为蜡样芽孢杆菌(Bacillus cereus)、梭状菌属(Clostridium sp.)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、贝莱斯芽孢杆菌(Bacillus velezensis)、暹罗芽孢杆菌(Bacillus siamensis)、枯草芽孢杆菌(Bacillus subtilis)。其中解淀粉芽孢杆菌B3对啤酒糟的降解效果最好,且优于常规真菌,其发酵啤酒糟的蛋白质、总还原糖、阿魏酰低聚糖含量、木聚糖酶酶活、羧甲基纤维素酶酶活均最高,分别为25.26%、3.92%、10.01μmol/L、803.59 U及38.16 U。  相似文献   

7.
8.
To produce a beer with a high ethanol content, preliminary research on fed‐batch fermentation profiles with glucose syrup as an adjunct during the primary fermentation period was conducted. The ethanol concentration of the beer was elevated by feeding a glucose syrup into the fermentors at a later stage of primary fermentation. Fermentation trials were carried out using a typical lager strain, SC‐9, with a pitching rate at 7.0 × 106 cells/mL. An all‐malt wort (12.5°P) was employed and the primary fermentation temperature was 14 °C. Glucose syrup was supplemented when the concentration of residual reducing sugars was decreased to ~10 g/L. Results showed that the supplemented glucose was consumed rapidly and that the ethanol concentration in the final beer was raised to 67.9 g/L. Additional growth of yeast was observed after feeding accompanied by a low yield of ethanol (~0.46 g/g). Formation of diacetyl was enhanced by yeast growth and two additional peaks were obtained after feeding. The peak value of the diacetyl concentration was 1.90 mg/L. The fed‐batch fermentation resulted in a beer with an overproduction of higher alcohols and esters, indicating that brewing under these experimental conditions led to an unbalanced flavour profile. Results of optimization demonstrated that the optimal conditions were found to be 15°P for initial wort extract, 10 °C for fermentation temperature and 20 × 106 cells/mL for yeast pitching rate, leading to total higher alcohols of 173.8 mg/L, total esters of 22.8 mg/L and an acetaldehyde concentration of 40.5 mg/L. A 12 day maturation and fermentation temperature of 8 °C was needed to reduce the acetaldehyde to 14.3 mg/L. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

9.
10.
11.
Brewer's spent grain (BSG) is the most abundant by‐product generated from the beer‐brewing process, representing approximately 85% of the total by‐products obtained. This material is basically constituted by the barley grain husks obtained as solid residue after the wort production. Since BSG is rich in sugars and proteins, the main and quickest alternative for elimination of this industrial by‐product has been as animal feed. However, BSG is a raw material of interest for application in different areas because of its low cost, large availability throughout the year and valuable chemical composition. In the last decade, many efforts have been directed towards the reuse of BSG, taking into account the incentive that has been given to recycle the wastes and by‐products generated by industrial activities. Currently, many interesting and advantageous methods for application of BSG in foods, in energy production and in chemical and biotechnological processes have been reported. The present study presents and discusses the most recent perspectives for BSG application in such areas. © 2013 Society of Chemical Industry  相似文献   

12.
The present study aimed to investigate the composition and structure of sorghum spent grains (SSG) as a pre‐requisite for evaluating potential applications of this brewery co‐product. SSG samples sourced from African breweries employing a grist with a proportion of a hammer milled‐unmalted sorghum (Sorghum vulgare cv. Fara Fara) were found to be heterogeneous materials containing remnants of intact grains, and with particles ranging in size from <0.1 to >2 mm. Samples contained a considerable amount of residual starch (4.6–10.0% d.b.), much higher than typically reported for barley‐derived spent grains. This probably arises from the use of grists high in unmalted sorghum, but indicates that improvements in brewing process efficiency could be achieved with improvements, for example, in milling and mashing protocols. The crude protein content of the SSG samples was unexpectedly high (38.0–41.2% d.b.), indicating that this material would have potential value as an animal feed or source of refined protein. Potential reasons for this higher than expected residual protein content are discussed. The remainder of SSG gross composition (mean of five samples) was cellulose (11.4% d.b.), hemicellulose (17.3% d.b.), lipid (8.5% d.b.), lignin (9.4% d.b.) and ash (4.46% d.b.), with a total mass recovery of close to 98% represented by all analysed components. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

13.
An effective process for the chemical–biotechnological utilization of trimming wastes of vineshoots, an agricultural waste with little use, is reported. Initial treatment with sulfuric acid (prehydrolysis) allowed the solubilization of hemicelluloses to give xylose and glucose‐containing liquors (suitable to make fermentation media for lactic acid production with Lactobacillus pentosus) and a solid phase containing cellulose and lignin. The solid residues from prehydrolysis were treated with NaOH in order to increase their cellulase digestibility. In the alkaline treatments, the effects of temperature (in the range, 50–130 °C), reaction time (30–120 min) and NaOH concentration (4–12 wt% of solution) on the composition and susceptibility to enzymatic hydrolysis of solid residues were assessed by means of an experimental plan with factorial structure. The lignin content decreased, whereas the susceptibility towards the enzymatic hydrolysis increased with temperature, reaction time and NaOH concentration within the tested range. Using the cellulosic residues achieved under the harsher conditions, favorable fermentation kinetics during simultaneous saccharification and fermentation carried out by L rhamnosus for lactic acid production were observed. The nutrients employed were the complete MRS broth and a cheaper medium developed using viticulture lees coming from the white wine making technology. In all cases the final lactic acid concentration achieved was similar, although the volumetric productivity was lower when using lees due to inhibitory effects over the enzymatic hydrolysis. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
以啤酒糟为试验材料,研究固态发酵制备阿魏酰低聚糖和膳食纤维的最佳发酵工艺条件。以阿魏酰低聚糖和可溶性膳食纤 维含量为评价指标,选择木聚糖、尿素、磷酸二氢钾为影响因素,通过正交试验确定最佳固态培养基配方。在接种量、发酵时间和发酵 温度3个单因素试验的基础上,利用响应面法优化出芽短梗霉发酵啤酒糟的发酵工艺条件。结果表明,固态发酵的最佳培养基配方为 木聚糖6%、尿素4%和磷酸二氢钾1%;最佳固态发酵条件为接种量12%、发酵时间4 d和发酵温度29 ℃。在此优化条件下,阿魏酰低聚 糖含量和可溶性膳食纤维含量都达到最高,分别为37.67μmol/L和23.76%。  相似文献   

15.
L‐lactic acid production from spent grain with immobilized lactic acid bacteria was investigated. Spent grains were liquefied by a steam explosion treatment to obtain liquefied sugar. When 1 kg of wet spent grain was treated under the 30 kg/cm2pressure for 1 min using a 5‐L steam explosion reactor, 60 g of total sugar was obtained from the liquefied spent grain. Furthermore, 1.3% (w/v) of glucose, 0.4% (w/v) of xylose, and 0.1% (w/v) of arabinose were produced when the liquefied spent grain was treated with glucoamylase, cellulase, and hemicellulase enzymes. When batch L‐lactic acid production was carried out by Lactobacillus rhamnosus NBRC14710, 19.0 g/L L‐lactic acid was produced from the Tween 80 liquefied spent grain after 5 days. Furthermore, during repeated batch production with immobilized Lactobacillus rhamnosus NBRC14710 from Tween 80 liquefied spent grain at 37°C, the productivity of L‐lactic acid was maintained at a 10 time higher level over a period of 40 days.  相似文献   

16.
The objectives of the present in vivo and in situ trials were to evaluate whether feeding barley grain steeped in lactic acid (LA) would affect rumen fermentation patterns, in situ dry matter (DM) degradation kinetics, and milk production and composition in lactating dairy cows. The in vivo trial involved 8 rumen-fistulated Holstein cows fed once daily a total mixed ration containing rolled barley grain (27% in DM) steeped for 48 h in an equal quantity of tap water (CTR) or in 0.5% LA (TRT) in a 2 × 2 crossover design. The in situ trials consisted of incubation of untreated rolled barley grain in cows fed CTR or TRT diets and of incubation of 3 different substrates including CTR or barley grain steeped in 0.5% or 1.0% LA (TRT1 and TRT2, respectively) up to 72 h in the rumen. Results of the in vivo trial indicated that cows fed the TRT diet had greater rumen pH during most intensive fermentation phases at 10 and 12 h post-feeding. The latter effect was associated with a shorter duration in which rumen pH was below 5.8 for cows fed the TRT diet (2.4 h) compared with CTR diet (3.9 h). Furthermore, cows fed the TRT diet had lower concentrations of volatile fatty acids at 2 and 4 h post-feeding. In addition, concentrations of preprandial volatile fatty acids were lower in the rumen fluid of cows fed the TRT diet. Results also showed that molar proportion of acetate was lower, whereas propionate tended to increase by feeding cows the TRT diet. Cows fed the TRT diet demonstrated greater rumen in situ lag time of substrate DM degradation and a tendency to lower the fractional degradation rate. Other in situ results indicated a quadratic effect of LA on the effective rumen degradability of substrates whereby the latter variable was decreased from CTR to TRT1 but increased for TRT2 substrate. Although the diet did not affect actual milk yield, fat-corrected milk, percentages of milk protein, and lactose and concentration of milk urea nitrogen, cows fed the TRT diet increased milk fat content and tended to increase fat:protein ratio in the milk. In conclusion, results demonstrated that treatment of barley grain with LA lowered the risk of subacute rumen acidosis and maintained high milk fat content in late-lactating Holstein cows fed diets based on barley grain.  相似文献   

17.
Extruded snacks and breadsticks were formulated with increasing levels of brewer's spent grain (BSG). The phenolic content increased by 4 and 7 fold with BSG addition in extrudates (40 g/100 g) and in breadsticks (35 g/100 g), respectively. Consequently, antioxidant capacity (DPPH, FRAP) also increased despite a recorded loss of phenolic compounds in extruded snacks. Arabinoxylans content increased up to 20 and 25 g of BSG addition/100 g of formulated extruded snacks and breadsticks, respectively. Further addition of BSG did not improve the content of arabinoxylans due to the possible formation of polysaccharide–protein complexes. Medium GI breadsticks were obtained with 35 g of BSG incorporation/100 g formulation. Phenolic content, arabinoxylans content and antioxidant capacity increased in the final products with BSG addition while the glycaemic response decreased. BSG can be incorporated as an ingredient in the formulation of extruded snacks and breadsticks generating products richer in antioxidants and fibre and with low GI.  相似文献   

18.
19.
A new amylolytic strain of Lactobacillus paracasei able to convert starch directly into L ‐(+)‐lactic acid (LA) was isolated. The identification of the by 16S rDNA sequencing proved that this strain, B41, is the first amylolytic representative of Lactobacillus casei group. The amylase activity assay revealed that L. paracasei B41 produced extracellular amylolytic enzyme, reaching 62 U/mL in the cell‐free supernatants. The optimal conditions for its action were pH 5.0 and temperature 45°C. The gene amy1 (1779 bp) encoding the putative B41 amylopullulanase was cloned, sequenced, and analyzed. The deduced protein contained a leader peptide of 28 amino acids and a mature peptide of 564 amino acids. Compared to the amylases of closely related species, B41 enzyme had several amino acid substitutions. An inducible control at amy1 expression was demonstrated. The starch fermentation abilities of L. paracasei B41 were studied in batch processes performed with and without pH control. The highest amount of LA from starch was obtained during 48 h fermentation from 40 g/L substrate at pH maintained at 5.0–37.3 g/L. In addition, 93.3% starch conversion into LA and the highest reported productivity for 24 h were achieved – 1.30 g/L/h.  相似文献   

20.
Batch‐wise sorbitol addition as a co‐substrate at the induction phase of methanol fed‐batch fermentation by Pichia pastoris (Mut+) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch‐wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag‐phase for the cells and reaching ‘high cell density production’ at t = 24 h of the process (CX = 70 g CDW/l); (b) achieving 1.8‐fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2‐fold; (d) eliminating the lactic acid build‐up period; (e) lowering the oxygen uptake rate two‐fold; and (f) obtaining 1.4‐fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut+ strains of P. pastoris for the production of any bio‐product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号