首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyzes averaged symbol error probabilities of burst transmission consisting of pilot and data symbols for hybrid adaptive decode‐or‐amplify‐forward (HDAF) relaying systems. Under the assumption of quasi‐static Rayleigh fading channels with independent and non‐identically distribution, we consider a channel estimation scheme based on pilot symbols and show how channel estimation error affects received signal‐to‐noise ratio (SNR) and symbol error probability (SEP). Firstly, all the possible detection error‐events are presented for all the relay nodes, and their probabilities are derived as forms related with data symbol burst transmission. For the given error event, we analyze the conditional SEP as an exact form and then, the averaged SEP (ASEP) is approximately derived as a closed‐form. The simulation results verify that our derived ASEP expression is accurate over all the regions of SNR. Utilizing the proposed expressions, we can evaluate ASEP performance of HDAF relay systems easily and fast. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, performance of an orthogonal frequency division multiplexing–based variable‐gain amplify and forward cooperative system using multiple relay with relay selection is analyzed over independent but not necessarily identically distributed frequency selective Nakagami‐m fading channels. For the analysis, nonlinear power amplifier is considered at the relay, and selection combining is adopted at destination node. Closed‐form expressions of the outage probability for various threshold signal‐to‐noise ratio (SNR) values and average symbol error rate for M‐ary quadrature amplitude modulation techniques are derived for the considered system. Further, the outage probability analysis is performed in high SNR regime to obtain the diversity order. Furthermore, impact of different fading parameters, multiple relay, and nonlinear power amplifier is highlighted on the outage probability and asymptotic outage probability for various threshold SNRs and on the average symbol error rate for various quadrature amplitude modulation constellations. The derived analytical expressions are generalized for various fading environments while considering the integer‐valued fading parameters. Finally, all the analytical results are verified through the Monte Carlo simulations for various SNR levels and system configurations.  相似文献   

3.
In this paper, error performances of multiple‐input multiple‐output systems that employ Alamouti‐coded transmission with transmit antenna selection are examined for binary phase‐shift keying, binary frequency‐shift keying, M‐ary phase‐shift keying, and M‐ary quadrature amplitude‐modulation signals in independent but non‐identically distributed flat Nakagami‐m fading channels. Exact symbol error rate expressions are derived by using the moment‐generating function‐based analysis method. Upper bound expressions have been obtained in order to examine the asymptotic diversity order of transmit antenna selection/Alamouti scheme. Also, outage probability analysis of investigated systems has been given in order to examine the system capacity. Monte Carlo simulations have validated the analytical symbol error rate performance results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Outage analysis plays a vital role in wireless systems to determine reliable transmission and effective communication. Incremental hybrid decode‐amplify‐forward (IHDAF) relay offers a way of meeting the challenges of capacity and coverage improvement with great potential in cooperative communication networks. Therefore, opportunistic incremental hybrid relaying must be integrated with coding schemes to achieve full diversity. In this paper, the outage behavior of polar coded and distributed coded cooperative relaying schemes is analyzed. Simulation results show that opportunistic incremental HDAF using polar code offers an outage capacity of 17 b/s/Hz for 4 × 4 multiantenna and 45 b/s/Hz in 8 × 8 multiantenna systems with an outage of 10?8 and 10?13, respectively. Moreover, the polar coded opportunistic IHDAF system in 8 × 8 MIMO achieves 2 and 6 dB higher gains compared with amplify‐and‐forward (AF) and decode‐and‐forward (DF) relaying schemes. The closed‐form expression for outage probability has been derived through Marcum‐Q approximations and processed through Monte Carlo simulations.  相似文献   

5.
In this paper, the performance of variable‐rate adaptive modulation schemes in the amplify‐and‐forward cooperative systems with relay selection is analyzed over Rayleigh fading channels. We consider constant power and discrete‐rate adaptive multi‐level modulation techniques. The switching levels required for discrete‐rate adaptive modulation have been determined for two schemes, namely fixed switching levels and optimum switching levels, both respecting a target bit error rate requirements, where in the later scheme, the switching levels are optimally determined in a way that the average spectral efficiency of the system is maximized. Two M‐ary modulation schemes, namely quadrature amplitude modulation and phase shift keying, are considered. Closed‐form expressions are derived for three performance metrics, namely average spectral efficiency, outage probability, and average bit error rate, for two cases: independent and identically distributed fading relay links and independent and non‐identically distributed links. It is shown that, compared with using fixed switching levels, employing optimum switching levels provides a slight improvement in the spectral efficiency and moderate improvements in the signal‐to‐noise ratio gain and in the outage probability of the system. It is also shown that compared with the independent and identically distributed links, independent and non‐identically distributed relay links yield a slight increase in the signal‐to‐noise ratio gain and a slight decrease in the diversity order of the system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We derive and analyze the exact closed‐form expression for the average bit error probability (BEP) of M‐ary square quadrature amplitude modulation (QAM) for diversity reception in frequency‐nonselective Nakagami fading. A maximal ratio combining (MRC) diversity technique with independent or correlated fading cases are considered. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The presented new expressions offer a convenient way to evaluate the performance of M‐ary square QAM with an MRC diversity combiner for various cases of practical interest.  相似文献   

7.
Performance of dual‐hop decode‐and‐forward relay system with selection‐combining receiver is analyzed over Rice fading channels. The following closed‐form expressions of performance metrics are derived: moment generating function for selection‐combining receiver output signal‐to‐noise ratio, exact average bit error rate of noncoherent modulations, approximate average symbol error rate for coherent modulations, and outage probability. We also obtain simple asymptotic expressions for moment generating function, exact average bit error rate, average symbol error rate, and outage probability, which are useful to characterize the diversity order and the coding gain. The optimal power allocation analysis suggests that the optimal power allocation factor is independent of total signal‐to‐noise ratio and source‐to‐destination link fading parameters. The accuracy of the obtained analytical expressions are supported by computer simulation results.  相似文献   

8.
Various sectors are likely to carry a set of emerging applications while targeting a reliable communication with low latency transmission. To address this issue, upon a spectrally‐efficient transmission, this paper investigates the performance of a 1 full‐dulpex relay system and considers for that purpose, 2 basic relaying schemes, namely, the symbol‐by‐symbol transmission, i.e., amplify‐and‐forward and the block‐by‐block transmission, i.e., selective decode‐and‐forward. The conducted analysis presents an exhaustive comparison, covering both schemes, over 2 different transmission modes, i.e., the noncombining mode where the best link, direct, or relay link is decoded and the signals combining mode, where direct and relay links are combined at the receiver side. While targeting latency purpose as a necessity, simulations show a refined results of performed comparisons and reveal that amplify‐and‐forward relaying scheme is more adapted to combining mode, whereas the selective decode‐and‐forward relaying scheme is more suitable for noncombining mode.  相似文献   

9.
Hybrid diversity systems have been of great importance because they provide better diversity orders and robustness to the fading effects of wireless communication systems. This paper focuses on the performance analysis of multiple‐input gle‐output systems that employ combined transmit antenna selection (TAS)/maximal‐ratio transmission (MRT) techniques (i.e., hybrid TAS/MRT). The probability density function, the moment generating function and the n th order moments of the output signal‐to‐noise ratio of the investigated diversity scheme are derived for independent identically distributed flat Nakagami‐m fading channels. The system capacity of the hybrid TAS/MRT scheme is examined from the outage probability perspective. Exact bit/symbol error rate (BER/SER) expressions for binary frequency shift keying, M‐ary phase shift keying and square M‐ary quadrature amplitude modulation signals are derived by using the moment generating function‐based analysis method. By deriving the upper bounds for BER/SER expressions, it is also shown that the investigated systems achieve full diversity orders at high signal‐to‐noise ratios. Also, by Monte Carlo simulations, analytical performance results are validated and the effect of feedback delay, channel estimation error and feedback quantization error on BER/SER performances are examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Relay communications have attracted increasing research attentions as a cost‐effective technique to improve spatial diversity, service coverage, and energy efficiency in wireless networks. However, existing relay schemes (e.g., amplify‐and‐forward and decode‐and‐forward (DF) schemes) still face several major challenges, particularly the accumulation of multipath channels effect in AF and long processing latency in DF. To address these issues, we propose a novel equalize‐and‐forward (EF) relay scheme to enhance the retransmission reliability while maintaining low processing delay at the relay node. In particular, the proposed EF relay estimates and equalizes the channel between source and relay to eliminate the channel accumulation effect without signal regeneration. To further reduce the relay processing time, the channel estimation and equalization in the proposed EF design are performed in parallel. The proposed equalization is realized by presetting the equalizer coefficients with the current channel response that is predicted in parallel using multiple past channel responses. Numerical results show that the proposed EF relay scheme can achieve comparable symbol error rate performance as the DF relay with much less relay latency. In addition, the EF relay exhibits low outage probability at the same data rate as compared with traditional amplify‐and‐forward and DF schemes. schemes. Copyright © 2015 John Wiley & Sons, Ltd  相似文献   

11.
This paper proposes a simple architecture for half‐duplex cooperative systems which use amplify‐and‐forward (AF) as a relay strategy and one‐dimensional modulations for source messages. The proposed solution uses the two orthogonal channels of quadrature modulation in order to allow a node to behave simultaneously as a source and a relay. We demonstrate that the new scheme has a similar performance to the conventional orthogonal amplify‐and‐forward protocol without suffering from bandwidth loss, and avoids error propagation problems of previously reported AF superposition schemes. The proposed technique is suitable for applications with low spectral efficiencies and practical adaptive systems where real modulations are implemented based on a quadrature modulation core. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
在n-Rayleigh信道下,研究了MRC(Maximal Ratio Combining)合并接收系统的平均码字错误率(ASEP)性能。基于矩生成函数(MGF)的方法,推导了MRC接收系统在n-Rayleigh衰落信道上采用M进制相移键控(MPSK),M进制正交幅度调制(MQAM)和M进制脉冲幅度调制(MPAM)等几种M进制数字调制方式的ASEP的计算式。然后在不同条件下,仿真了系统的ASEP性能,仿真值与理论值相一致,理论分析的正确性得到了证明。分析结果表明:分集支路数和衰弱因子对系统的ASEP性能有重要影响。  相似文献   

13.
In this work, an amplify‐and‐forward variable‐gain relayed mixed RF‐FSO system is studied. The considered dual‐hop system consists of a radio frequency (RF) link followed by a free space optical (FSO) channel. The RF link is affected by short‐term multipath fading and long‐term shadowing effects and is assumed to follow the generalized‐K fading distribution that approximates accurately several important distributions often used to model communication channels. The FSO channel experiences fading caused by atmospheric turbulence that is modeled by the gamma‐gamma distribution characterizing moderate and strong turbulence conditions. The FSO channel also suffers path loss and pointing error induced misalignment fading. The performance of the considered system is analyzed under the collective influence of distribution shaping parameters, pointing errors that result in misalignment fading, atmospheric turbulence, and path loss. The moment‐generating function of the Signal power to noise power ratio measured end‐to‐end for this system is derived. The cumulative distribution function for the Signal power to noise power ratio present between the source and destination receiver is also evaluated. Further, we investigate the error and outage performance and the average channel capacity for this system. The analytical expressions in closed form for the outage probability, symbol and bit error rate considering different modulation schemes and channel capacity are also derived. The mathematical expressions obtained are also demonstrated by numerical plots.  相似文献   

14.
In this paper, performance of joint transmit and receive antenna selection in each hop of dual hop amplify‐and‐forward relay network is analyzed over flat and asymmetric Nakagami‐m fading channels. In the network, source, relay, and destination are equipped with multiple antennas. By considering relay location, we derive exact closed‐form cumulative distribution function, moment generating function, moments of end‐to‐end signal‐to‐noise ratio and closed form symbol error probability expressions for fixed and channel state information‐based relay gains. We also derive the asymptotical outage probability and symbol error probability expressions to obtain diversity order and array gain of the network. Analytical results are validated by the Monte Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an analysis on the performance of single‐relay and multiple fixed‐relay cooperative network. The relay nodes operate in amplify‐and‐forward (AF) mode and transmit the signal through orthogonal channels. We consider maximal‐ratio combining at the destination to get the spatial diversity by adding the received signals coherently. The closed‐form moment‐generating function (MGF) for the total equivalent signal‐to‐noise ratio (SNR) is derived. The exact expressions of symbol‐error rate, outage capacity, and outage probability are obtained using the closed‐form MGF for single‐relay and multiple‐relay cooperative network with M‐ary phase shift keying (M‐PSK) and M‐ary quadrature amplitude modulation (M‐QAM) over independent and non‐identical Nakagami‐m channels and Rician fading channels. The approximated closed‐form expression of ergodic capacity is derived for both Nakagami‐m and Rician fading channels. The performance of the system is analyzed at various relay locations. The theoretical results are then compared with the simulation results obtained for binary PSK, quadrature PSK, and 16‐QAM modulation schemes to verify the analysis. Here, the expressions derived can be easily and more efficiently used to compute the performance parameters than doing Monte Carlo simulations. It is shown that cooperation is significant only for low K values for Rician by plotting cooperation gain versus K. The results show that the cooperative network performs best when the relay is located in the middle of source to destination link, at lower SNR values, and the performance of the system is worst if the relay is located closer to the source than to the destination. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the performance of transmission techniques on the fixed‐gain amplify‐and‐forward–based asymmetric radio frequency/free space optical (RF/FSO) communication system is studied. The RF link and FSO link are, respectively, modeled by the Nakagami‐m and Gamma‐Gamma fading channels under the effect of zero boresight and non‐zero boresight pointing errors subject to heterodyne detection. Maximum ratio transmission (MRT) and orthogonal space‐time block coding (OSTBC) techniques are the transmission scenarios considered at the system source while selection combining is used for reception at the relay and destination for the signal detection. Moreover, a unified cumulative density distribution (CDF) of end‐to‐end signal‐to‐noise ratio is derived for the system. By utilizing this channel statistical CDF, the closed‐form expressions for the outage probability and average bit error rate for the M‐ary phase shift keying modulation are then obtained for the system. The analysis presented illustrates that both the atmospheric turbulence and pointing error significantly degrade the system performance. Based on this, the MRT transmission technique offers a better performance compared with the OSTBC techniques under the same system conditions. The accuracy of the analytical results is verified by Monte‐Carlo simulations.  相似文献   

17.
In this paper, an opportunistic relaying‐based incremental hybrid decode‐amplify‐forward (OR‐IHDAF) scheme that combines robust protocol switch with efficient relay selection is proposed in multi‐relay scenario to cope with the complex and variable channel environments. The proposed OR‐IHDAF scheme can improve the system performance significantly compared with the incremental hybrid decode‐amplify‐forward protocol with the increase of the possible candidate relay nodes and opportunistic relay selection. The analytical expression of the system outage probability of the OR‐IHDAF scheme is presented based on the probability density function and cumulative distribution function, which might be useful to avoid lengthy simulations. Numerical results show the correctness of our theoretical analysis and the performance improvement of the OR‐IHDAF scheme compared with the other current hybrid cooperative protocols and OR‐based cooperative schemes. The effects of the power allocation schemes on the outage probability are also provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a fixed‐gain amplify‐and‐forward relaying under non‐ideal hardware is analyzed. The relaying system is impaired because of relay's power amplifier (PA) nonlinearity and in‐phase and quadrature‐phase (IQ) imbalance at a destination. Closed‐form expressions for outage probability as well as ergodic capacity approximation and its upper bound are derived. Also, the outage probability and the ergodic capacity asymptotic expressions in the high signal‐to‐noise ratio are deduced. For the first time, the joint influence of PA nonlinearity and IQ imbalance on the system in terms of outage probability, symbol error rate, and ergodic capacity is investigated. The results are compared with the respect to soft envelope limiter and traveling‐wave tube amplifier at the relay. Based on the analytical and the numerical results, important insights into the impact of IQ imbalance and nonlinearity of the aforementioned PA models on the system performance are gained as well as valuable information on the performance of practically deployed fixed‐gain amplify‐and‐forward relaying system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, end‐to‐end performance of transmit antenna selection (TAS) and generalized selection combining (GSC) is studied in a dual‐hop amplify‐and‐forward relay network over flat Rayleigh fading channels. In the system, source and destination equipped with multiple antennas, communicate by the help of single relay equipped with single antenna. Source‐destination link is not available. TAS is used for transmission at the source, and GSC is used for reception at the destination. By considering the relay location and the presence of error in feedback channel from the relay to the source, we derive closed‐form outage probability, moment generating function and moments of end‐to‐end signal‐to‐noise ratio, and closed‐form symbol error probability (SEP) expressions for channel state information (CSI)‐based and fixed relay gains. The diversity order and array gain of the network are obtained for both CSI‐based and fixed relay gains by deriving asymptotical outage probability and SEP expressions. The analytical results are validated by the Monte Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Single‐symbol generalized spatial modulation (GSM) improves upon the limitation of spatial modulation (SM) by reducing the number of required transmit antennas to achieve high data rates. In this paper, we investigate the application of media‐based modulation (MBM) based on radio frequency mirrors to single‐symbol GSM, with the aim of improving error performance. The theoretical average bit error probability of the proposed scheme is derived, employing a lower bound approach and used to validate the Monte Carlo simulation results. Finally, the effect of optimal and suboptimal mirror activation pattern selection employing Euclidean distance and channel amplitude coupled with antenna correlation is investigated for the proposed media‐based single‐symbol GSM system. The Monte Carlo simulation results obtained demonstrate a significant improvement over the conventional SM, GSM, and media‐based SM (MB‐SM) schemes in terms of error performance and spectral efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号