首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy harvesting (EH) has been considered as one of the promising technologies to power Internet of Things (IoT) devices in self‐powered IoT networks. By adopting a typical harvest‐then‐transmit mode, IoT devices with the EH technology first harvest energy by using wireless power transfer (WPT) and then carry out wireless information transmission (WIT), which leads to the coordination between WPT and WIT. In this paper, we consider optimizing energy consumption of periodical data collection in a self‐powered IoT network with non‐orthogonal multiple access (NOMA). Particularly, we take into account time allocation for the WPT and WIT stages, node deployment, and constraints for data transmission. Moreover, to thoroughly explore the impact of different multiple access methods, we theoretically analyse and compare the performance achieved by employing NOMA, frequency division multiple access (FDMA), and time division multiple access (TDMA) in the considered IoT network. To validate the performance of the proposed method, we conduct extensive simulations and show that the NOMA outperforms the FDMA and TDMA in terms of energy consumption and transmission power.  相似文献   

2.
The Internet of Things (IoT) supports many users and context‐aware applications controlling heterogeneous IoT devices. This differs from traditional networks, in which a single entity manages each device. Thus, new access control models must be created in order to support more responsive, scalable, secure, and autonomous management. This article presents an attribute‐based access control model, which applies conflict resolution and access delegation in a multiuser and multiapplication environment. With scalability in mind, we propose the caching of access permissions, as well as a split policy processing model in which the devices with enough computational power perform part of the processing. The proposed model was implemented as part of the ManIoT architecture an d evaluated in experiments on a testbed to demonstrate its efficiency. Results show that our model accelerates the processing of access management policies from 51% by up to 79%.  相似文献   

3.
Internet of things (IoT) has evolved as an innovation of next generation in this world of smart devices. IoT tends to provide services for data collection, data management, and data and device security required for application development. Things or devices in IoT communicate and compute to make our lives comfortable and safe. In inventory automation, real‐time check on items, their information management, and status management, monitoring can be carried out using IoT. The huge amount of data that flows among the devices in the network demands for a security framework that ensures authentication, authorization, integrity, and confidentiality of data. The existing security solutions like SIMON or SPECK offer lightweight security solutions but are vulnerable to differential attack because of their simplicity. Moreover, existing solutions do not offer inbuilt authentication. Therefore, this research work contributes a secure and lightweight IoT‐based framework using wireless sensor network (WSN) as a technology. The existing security solutions SPECK and SIMON are compared with the proposed security approach using COOJA simulator. The results show that proposed approach outstands others by 2% reduction in number of CPU cycles, 10% less execution time, 4% less memory requirements of security approach, and with minimum 10% more security impact.  相似文献   

4.
为解决偏远地区或突发灾害等场景中的物联网(Internet of Things, IoT)设备的任务计算问题,构建了一个非正交多址接入(Non-orthogonal Multiple Access, NOMA)-IoT(NOMA-IoT)下多无人机(Unmanned Aerial Vehicle, UAV)辅助的NOMA多址边缘计算(Multiple Access Edge Computing, MEC)系统。该系统中设备的计算能耗、卸载能耗和MEC服务器计算能耗直接受同信道干扰、计算资源和发射功率的影响,可通过联合优化卸载策略、计算资源和发射功率最小化系统加权总能耗。根据优化问题的非凸性和复杂性,提出了一种有效的迭代算法解决:首先,对固定卸载策略,计算资源和发射功率分配问题可通过连续凸逼近转化为可解的凸问题;其次,对固定计算资源和发射功率,利用联盟形成博弈解决卸载策略问题,以最小化IoT设备之间的同信道干扰。仿真结果表明,较OMA接入方式,NOMA接入方式减少本地计算能耗、卸载能耗及计算能耗约20%;较无卸载策略方法,包含卸载策略方法在减少系统加权总能耗方面效果较为明显。  相似文献   

5.
Recently, the deployment of novel smart network concepts, such as the Internet of things (IoT) or machine‐to‐machine communication, has gained more attention owing to its role in providing communication among various smart devices. The IoT involves a set of IoT devices (IoTDs) such as actuators and sensors that communicate with IoT applications via IoT gateways without human intervention. The IoTDs have different traffic types with various delay requirements, and we can classify them into two main groups: critical and massive IoTDs. The fundamental promising technology in the IoT is the advanced long‐term evolution (LTE‐A). In the future, the number of IoTDs attempting to access an LTE‐A network in a short period will increase rapidly and, thus, significantly reduce the performance of the LTE‐A network and affect the QoS required by variant IoT traffic. Therefore, efficient resource allocation is required. In this paper, we propose a priority‐based allocation scheme for multiclass service in IoT to efficiently share resources between critical and massive IoTD traffic based on their specific characteristics while protecting the critical IoTDs, which have a higher priority over the massive IoTDs. The performance of the proposed scheme is analyzed using the Geo/G/1 queuing system focusing on QoS guarantees and resource utilization of both critical and massive IoTDs. The distribution of service time of the proposed system is determined and, thus, the average waiting and service times are derived. The results indicate that the performance of the massive IoTDs depends on the data traffic characteristics of the critical IoTDs. Furthermore, the results emphasize the importance of the system delay analysis and demonstrate its effects on IoT configurations.  相似文献   

6.
Recently, content‐centric networking (CCN) has become one of the important technologies for enabling the future networks. Along with its recognized potentialities as a content retrieval and dissemination solution, CCN has been also recently considered as a promising architecture for the Internet of things (IoT), because of 2 main features such as named‐based routing and in‐network caching. However, IoT is characterized by challenging features: small storage capacity of resource‐constrained devices due to cost and limitation of energy and especially transient data that impose stringent requirements on the information freshness. As a consequence, the intrinsic caching mechanisms existing in CCN approach do not well suit IoT domains; hence, providing a specific caching policy at intermediate nodes is a very challenging task. This paper proposes an effective multiattribute in‐network caching decision algorithm that performs a caching strategy in CCN‐IoT network by considering a set of crucial attributes including the content store size, hop count, particularly key temporal properties like data freshness, and the node energy level. Simulation results proved that our proposed approach outperforms 2 cache management schemes (probabilistic least recently used and AlwaysCache–first in first out in terms of improving total hit rate, reducing data retrieval delay, and enhancing content reusability in IoT environment).  相似文献   

7.
Mobile devices are the primary communication tool in day to day life of the people. Nowadays, the enhancement of the mobile applications namely IoTApps and their exploitation in various domains like healthcare monitoring, home automation, smart farming, smart grid, and smart city are crucial. Though mobile devices are providing seamless user experience anywhere, anytime, and anyplace, their restricted resources such as limited battery capacity, constrained processor speed, inadequate storage, and memory are hindering the development of resource‐intensive mobile applications and internet of things (IoT)‐based mobile applications. To solve this resource constraint problem, a web service‐based IoT framework is proposed by exploiting fuzzy logic methodologies. This framework augments the resources of mobile devices by offloading the resource‐intensive subtasks from mobile devices to the service providing entities like Arduino, Raspberry PI controller, edge cloud, and distant cloud. Based on the recommended framework, an online Repository of Instructional Talk (RIoTalk) is successfully implemented to store and analyze the classroom lectures given by faculty in our study site. Simulation results show that there is a significant reduction in energy consumption, execution time, bandwidth utilization, and latency. The proposed research work significantly increases the resources of mobile devices by offloading the resource‐intensive subtasks from the mobile device to the service provider computing entities thereby providing Quality of Service (QoS) and Quality of Experience (QoE) to mobile users.  相似文献   

8.
Smart wearable electronics that are fabricated on light‐weight fabrics or flexible substrates are considered to be of next‐generation and portable electronic device systems. Ideal wearable and portable applications not only require the device to be integrated into various fiber form factors, but also desire self‐powered system in such a way that the devices can be continuously supplied with power as well as simultaneously save the acquired energy for their portability and sustainability. Nevertheless, most of all self‐powered wearable electronics requiring both the generation of the electricity and storing of the harvested energy, which have been developed so far, have employed externally connected individual energy generation and storage fiber devices using external circuits. In this work, for the first time, a hybrid smart fiber that exhibits a spontaneous energy generation and storage process within a single fiber device that does not need any external electric circuit/connection is introduced. This is achieved through the employment of asymmetry coaxial structure in an electrolyte system of the supercapacitor that creates potential difference upon the creation of the triboelectric charges. This development in the self‐charging technology provides great opportunities to establish a new device platform in fiber/textile‐based electronics.  相似文献   

9.
Sustainable and safe energy sources combined with cost effectiveness are major goals for society when considering the current scenario of mass production of portable and Internet of Things (IoT) devices along with the huge amount of inevitable e‐waste. The conceptual design of a self‐powered “eco‐energy” smart card based on paper promotes green and clean energy, which will bring the zero e‐waste challenge one step closer to fruition. A commercial raw filter paper is modified through a fast in situ functionalization method, resulting in a conductive cellulose fiber/polyaniline composite, which is then applied as an energy harvester based on a mechano‐responsive charge transfer mechanism through a metal/conducting polymer interface. Different electrodes are studied to optimize charge transfer based on contact energy level differences. The highest power density and current density obtained from such a paper‐based “eco‐energy” smart card device are 1.75 W m?2 and 33.5 mA m?2 respectively. This self‐powered smart energy card is also able to light up several commercial light‐emitting diodes, power on electronic devices, and charge capacitors.  相似文献   

10.
Cloud computing provides high accessibility, scalability, and flexibility in the era of computing for different practical applications. Internet of things (IoT) is a new technology that connects the devices and things to provide user required services. Due to data and information upsurge on IoT, cloud computing is usually used for managing these data, which is known as cloud‐based IoT. Due to the high volume of requirements, service diversity is one of the critical challenges in cloud‐based IoT. Since the load balancing issue is one of the NP‐hard problems in heterogeneous environments, this article provides a new method for response time reduction using a well‐known grey wolf optimization algorithm. In this paper, we supposed that the response time is the same as the execution time of all the tasks that this parameter must be minimized. The way is determining the status of virtual machines based on the current load. Then the tasks will be removed from the machine with the additional load depending on the condition of the virtual machine and will be transferred to the appropriate virtual machine, which is the criterion for assigning the task to the virtual machine based on the least distance. The results of the CloudSim simulation environment showed that the response time is developed in compared to the HBB‐LB and EBCA‐LB algorithm. Also, the load imbalancing degree is improved in comparison to TSLBACO and HJSA.  相似文献   

11.
Smart heating devices with reliable self‐regulating performances and high efficiency, combined with additional properties like mechanical flexibility, are of particular interest in healthcare, soft robotics, and smart buildings. Unfortunately, the development of smart heaters necessitates managing normally conflicting requirements such as good self‐regulating capabilities and efficient Joule heating performances. Here, a simple and universal materials design strategy based on a series connection of different conductive polymer composites (CPC) is shown to provide unique control over the pyroresistive properties. Hooke's and Kirchhoff's laws of electrical circuits can simply predict the overall pyroresistive behavior of devices connected in series and/or parallel configurations, hence providing design guidelines. An efficient and mechanically flexible Joule heating device is hence designed and created. The heater is characterized by a zero temperature coefficient of resistance below the self‐regulating temperature, immediately followed by a large and sharp positive temperature coefficient (PTC) behavior with a PTC intensity of around 106. Flexibility and toughness is provided by the selected elastomeric thermoplastic polyurethane (TPU) matrix as well as the device design. The universality of the approach is demonstrated by using different polymer matrices and conductive fillers for which repeatable results are consistently obtained.  相似文献   

12.
In this paper, we consider the distributed opportunistic scheduling problem for the Orthogonal Frequency Division Multiplexing OFDM‐based device‐to‐device (D2D) communications, where D2D links contend for access to the dedicated spectrum with limited assistance from cellular infrastructures. Particularly, a synchronous distributed opportunistic scheduling protocol under fairness constraints (DO‐Fast) is prompted. In DO‐Fast, a round‐robin strategy is integrated with the opportunistic scheduling to tackle the trade‐off between system throughput and access fairness. Moreover, without instantaneous channel state information at receivers, we incorporate a priority allocation scheme, where access priorities are assigned randomly in a local fashion. Consequently, DO‐Fast is robust against imperfect channel estimates and inaccurate channel state information ordering. In addition, the opportunistic strategy in DO‐Fast is distinguished from the existing ones in that efficient spatial reuse is exploited by allowing concurrent transmissions based on the signal‐to‐interference ratio scheduling criterion. Meanwhile, access opportunities are moderately granted for poor quality links by the round‐robin strategy for fairness considerations. We analyze and compare three practical scheduling strategies in terms of the access probability. We also evaluate access fairness through Jain's Index. It is shown via numerical and simulation results that DO‐Fast could achieve efficient spectrum utilization and guarantee the short‐term fairness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Internet of Things (IoT) is connected to heterogeneous devices. Efficient adaptive scheduling with encoding and decoding of data is an unaddressed issue in IoT. This paper processes the data under three major hierarchy: namely, adaptability, scheduling of data, and network coding for that data. The reliable access to the information is ensured by a device which is a primary eminence in IoT. Device must be able to adapt itself according to the changes in the network and to maintain its reliability as well as transparency and seamless access to the resources. To enhance the performance of the data dissemination, the scheduling process is investigated using the spatial grouping in IoT devices; this is achieved by joint spatial and code domain scheduling scheme, and the novel preconfigured access scheme is coined in order to minimize the collision rate of arbitrary access; during the data dissemination, the erasure coding scheme is used for the encoding and decoding of packets which provides optimal redundancy. We carried the simulation using Contiki and it shows the proposed Polymorphic Erasure Coding with Markov decision Adaptability and Neural networks (PECMAN) improves in terms of cost, overhead, and delay when compared with Multi‐user Shared Access (EMUSA), Polynomial‐time Optimal Storage Allocation (OSA) scheme, and Event‐Aware Back pressure Scheduling Scheme (EABS).  相似文献   

14.
热力管网系统中存在着智能化和自动化程度不高的问题,传统热力站和管网中仪器仪表具有接入网络困难、监测数据不及时、数据开放性不够等问题,呈现出一个个的信息孤岛。物联网技术能够提供感知设备的全面接入、数据的实时监测和共享,目前已经在建筑物节能、污水处理、消防、热力、水/电/燃气系统等行业领域得到广泛应用。所设计的热力管网系统的物联网网关可对热力参数进行实时检测,并将热力管网的状态实时传送给接入管理平台和数据库服务器,各个管理部门能够及时地监控热力管网的工作状态与运行情况。  相似文献   

15.
With the advent of the Internet‐of‐Things paradigm, the amount of data production has grown exponentially and the user demand for responsive consumption of data has increased significantly. Herein, we present DART, a fast and lightweight stream processing framework for the IoT environment. Because the DART framework targets a geospatially distributed environment of heterogeneous devices, the framework provides (1) an end‐user tool for device registration and application authoring, (2) automatic worker node monitoring and task allocations, and (3) runtime management of user applications with fault tolerance. To maximize performance, the DART framework adopts an actor model in which applications are segmented into microtasks and assigned to an actor following a single responsibility. To prove the feasibility of the proposed framework, we implemented the DART system. We also conducted experiments to show that the system can significantly reduce computing burdens and alleviate network load by utilizing the idle resources of intermediate edge devices.  相似文献   

16.
近年来,中国物联网政策支持力度不断加大,技术创新成果接连涌现,各领域应用持续深化,产业规模保持快速增长。本论文以物联网接入边界为切入点,探讨了物联网安全接入问题的解决方案。设计了基于可信计算3.0的物联网可信网关,以及安全管理中心,构建了可信的物联网安全边界接入系统。为各种异构物联网终端设备提供了安全屏障,隔绝了针对于物联网设备的网络安全威胁。  相似文献   

17.
In this paper, we propose an energy‐efficient power control and harvesting time scheduling scheme for resource allocation of the subchannels in a nonorthogonal multiple access (NOMA)–based device‐to‐device (D2D) communications in cellular networks. In these networks, D2D users can communicate by sharing the radio resources assigned to cellular users (CUs). Device‐to‐device users harvest energy from the base station (BS) in the downlink and transmit information to their receivers. Using NOMA, more than one user can access the same frequency‐time resource simultaneously, and the signals of the multiusers can be separated successfully using successive interference cancellation (SIC). In fact, NOMA, unlike orthogonal multiple access (OMA) methods, allows sharing the same frequency resources at the same time by implementing adaptive power allocation. Our aim is to maximize the energy efficiency of the D2D pairs, which is the ratio of the achievable throughput of the D2D pairs to their energy consumption by allocating the proper subchannel of each cell to each device user equipment (DUE), managing their transmission power, and setting the harvesting and transmission time. The constraints of the problem are the quality of service of the CUs, minimum required throughput of the subchannels, and energy harvesting of DUEs. We formulate the problem and propose a low‐complexity iterative algorithm on the basis of the convex optimization method and Karush‐Kuhn‐Tucker conditions to obtain the optimal solution of the problem. Simulation results validate the performance of our proposed algorithm for different values of the system parameters.  相似文献   

18.
Internet of Things (IoT) devices facilitate intelligent service delivery in a broad range of settings, such as smart offices, homes and cities. However, the existing IoT access control solutions are mainly based on conventional identity management schemes and use centralized architectures. There are known security and privacy limitations with such schemes and architectures, such as the single-point failure or surveillance (e.g., device tracking). Hence, in this paper, we present an architecture for capability-based IoT access control utilizing the blockchain and decentralized identifiers to manage the identity and access control for IoT devices. Then, we propose a protocol to provide a systematic view of system interactions, to improve security. We also implement a proof-of-concept prototype of the proposed approach and evaluate the prototype using a real-world use case. Our evaluation results show that the proposed solution is feasible, secure, and scalable.  相似文献   

19.
To facilitate the development of memristive devices, it is essential to resolve the problem of non‐uniformity in switching, which is caused by the random nature of the filamentary switching mechanism in many resistance switching memories based on transition metal oxide. In addition, device parameters such as low‐ and high‐state resistance should be regulated as desired. These issues can be overcome if memristive devices have switching limits for both the low‐ and high‐resistance states and if their resistance values are highly controllable. In this study, a method termed self‐limited switching for uniformly regulating the values of both the low‐ and high‐resistance states is suggested, and the circuit configuration required for the self‐limited switching is established in a Ta2O5/TaOx memristive structure. A method of improving the uniformity of multi‐level resistance states in this memristive system is also proposed.  相似文献   

20.
Recently, mobile phones have been recognized as the most convenient type of mobile payment device. However, they have some security problems; therefore, mobile devices cannot be used for unauthorized transactions using anonymous data by unauthenticated users in a cloud environment. This paper suggests a mobile payment system that uses a certificate mode in which a user receives a paperless receipt of a product purchase in a cloud environment. To address mobile payment system security, we propose the transaction certificate mode (TCM), which supports mutual authentication and key management for transaction parties. TCM provides a software token, the transaction certificate token (TCT), which interacts with a cloud self‐proxy server (CSPS). The CSPS shares key management with the TCT and provides simple data authentication without complex encryption. The proposed self‐creating protocol supports TCM, which can interactively communicate with the transaction parties without accessing a user's personal information. Therefore, the system can support verification for anonymous data and transaction parties and provides user‐based mobile payments with a paperless receipt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号