首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为改善或提高汽车行驶安全性及驾驭汽车的轻松舒适性,提出了基于城市工况的汽车智能巡航控制方法,建立了汽车纵向系统动力学模型。以巡航车与前车的理想安全距离与实际相对距离差及两车的相对速度差作为巡航控制变量,设计了智能巡航模糊逻辑控制器,实现了巡航车辆节气门开度与制动踏板行程的自动调节。利用MATLAB/Simulink建立了智能巡航仿真模块,并以城市工况下低速智能跟随工况为例进行了仿真。结果表明:该方法有效地实现了巡航车智能跟随前方车辆,并保证两车的安全行驶车距。  相似文献   

2.
奔腾智能混合动力电动轿车自适应巡航控制系统   总被引:7,自引:0,他引:7  
为了从整车系统控制角度综合解决车辆的安全、节能和环保问题,突破目前新能源车辆领域和智能汽车领域仍各独自开展相关技术研究的限制,提出一种融合新能源汽车和智能汽车各自先进技术的解决方案—智能混合动力电动轿车,并提出融合双模式切换自适应巡航控制、整车状态识别及转矩分配控制和驱/制动系统协调控制的整车自适应巡航分层控制体系。在上层控制中研究基于实时状态反馈的双模式切换2自由度结构模型匹配控制器,解决适应混合动力驱动系统动态特性的自适应巡航期望转矩制定的难题;在中层控制中采用了综合内燃机(Internal combustion engine,ICE)优化曲线、电动机最佳效率特性和电池最佳效率特性的基线式控制策略;在下层控制中提出发动机/驱动电动机的转矩协调控制策略和电动机制动/EVB液压制动的协调控制策略。在此基础上,通过仿真分析和实车试验对分层控制系统进行评价与验证。仿真与试验结果表明,所开发的分层式控制系统确保整车在自适应巡航状态下,不仅可以有效提高整车安全性和降低驾驶强度,而且使整车具有最佳的燃油经济性和排放性能。  相似文献   

3.
带启停巡航功能的全速自适应巡航控制是研究自动驾驶系统的基础。提出了一种分层控制方法实现全速巡航功能:上层控制器基于线性二次型最优控制的车辆自适应巡航控制系统;并在该系统之上分析启停巡航控制的运动特征,对车辆起步时的加速度进行修正,改变控制器的参数,实现了启停巡航控制;设计了一种启停巡航功能和ACC平滑过渡的方法;下层控制器来实现上层控制器的期望加速度。采用车辆动力学仿真软件Carsim与Matlab/Simulink联合仿真并将控制逻辑编写为C语言代码然后下载至实车控制器进行实车试验,试验结果与仿真结果表明所设计的控制器既能满足启停巡航控制平稳起步与制动停车的要求,同时满足高速ACC的较小跟踪距离误差和速度误差,证明了所设计控制器的有效性和实用性。  相似文献   

4.
朱敏  陈慧岩 《机械工程学报》2018,54(24):111-117
以无人驾驶轻型战术轮式越野车辆为平台,开展模型预测纵向速度跟踪控制实车试验研究。针对平台控制特性设计合适的下位控制器,使用Matlab/Simulink与包含气压制动系统的TruckSim车辆联合仿真初步测试系统可行性,并在沥青路和土路分别进行实车试验。试验结果表明:模型预测速度跟踪控制系统能够克服气压制动延时长、整车质量重、越野路况行驶阻力波动大等模型误差和不确定干扰,自适应调节期望加速度大小,实现不同行驶工况高精度速度跟踪。试验过程驱动/制动切换平稳、无振荡,且能够像熟练驾驶员一样充分利用发动机辅助制动,必要时既不施加电控制动,也不请求发动机输出转矩。系统使用现代车辆易于获得的车辆状态参数,便于向其他车辆移植,可作为无人车辆车体控制得力技术加以推广。  相似文献   

5.
针对矿用防爆车辆在实际运行过程中制动频次高、制动力不足、车辆失速危险性高的安全隐患,从满足矿用车辆制动能量大、制动频次高,系统要求安全可靠、操作维护简单方便的工况出发,基于车速智能检测和自适应电液协调制动技术,设计了一套矿用车辆智能稳速联合制动电液系统,详细阐述了智能稳速联合制动电液系统的设计、选型,探讨了电液系统智能检测及协调控制的技术问题,实现了矿用车辆行驶速度的自适应智能控制,有效避免了车辆失速的发生,提高了矿用车辆驾驶员生命安全保障,降低车辆故障率,提升了煤矿生产效率。  相似文献   

6.
为改善车辆自适应巡航控制(ACC)系统的功能并使其控制系统的性能更加完善,本文中研究一种ACC系统建模和分层控制方法。采用Prescan与Simulink建立了一种车辆纵向动力学模型,设计了具有上、下两层结构的自适应巡航控制系统,控制器基于Matlab/Simulink进行建模,上层结构通过最优控制理论计算出理想的期望跟车加速度,下层结构将期望跟车加速度作为输入量对车辆进行相应的加速和减速控制,通过对汽车距离差和相对速度的计算和推理,实时调整本车加速度。结果表明,所建立的巡航控制系统可以较好的实现车辆自适应巡航功能,并且保证良好的跟踪性、安全性和适应性。该控制算法具有响应速度快、超调量小、能够消除系统偏差等优点。  相似文献   

7.
车辆在行驶过程中由于受车载、路况、车体运动状态、环境变化等因素影响,使得通过建立数学模型来精确描述车辆动态过程变得非常困难,导致传统基于模型的控制方法难以适应车辆行驶过程中复杂的动态变化因素。针对车辆的动态目标位置跟踪特点,通过构建车辆动态目标位置的运动学模型,采用自适应预测控制方法(Model-free Adaptive Predictive Control,简称MFAPC)研究车辆弯道保持系统中的动态目标位置跟踪问题,并基于MFAPC方法实现控制器的设计。控制仿真结果表明,相比PID控制方法,采用无模型自适应预测控制方法对车辆动态目标位置进行动态跟踪控制,其跟踪精度更高,控制过程更加平稳,从而使车辆驾驶过程具有更好的舒适性。  相似文献   

8.
为了提高智能汽车行驶安全性,提出了基于人工水滴算法的避障路径规划和自适应路径跟踪控制方法.在路径规划方面,模拟水往低处流过程,提出了基于人工水滴算法的路径规划方法,经验证,人工水滴算法在动静态环境下都能够规划出避障路径.在路径跟踪方面,设计了转向控制与速度自适应控制的综合控制器;基于车辆线性二自由度模型,提出了模型预测转向控制;结合预瞄模型和二次规划方法,提出了速度随行驶路况自适应控制方法.经绕桩实验验证,本文提出的综合控制方法最大横向跟踪误差为0.1m,文献[11]提出的控制方法最大横向误差为0.6m,是本文方法的6倍,说明了综合控制器在路径跟踪控制中的精确性,且综合控制器的横摆角速度、侧向加速度均在约束范围内,满足国家标准对车辆的安全性要求.  相似文献   

9.
为解决智能车辆的自主转向问题,提高车辆在高速运动过程中的转向精度和稳定性,在智能网联汽车的背景下,从路径跟踪控制出发,提出一种变参数的智能网联汽车路径跟踪控制方法。该方法基于模型预测控制原理,设计了一种智能网联汽车的路径跟踪控制器。该方法先以3自由度模型的车辆模型为控制系统;对系统进行线性化后,确定系统的二次型目标函数,并依据函数形式确定矩阵形式;然后,在Carsim和Matlab/Simulink平台上进行离线仿真,确定各个典型工况下适用于该路径跟踪控制器的仿真参数;最后实现系统可根据由车联网获得车辆实际所处道路形状和实际车速选择合适的路径跟踪控制器的控制参数,完成智能网联汽车的自动转向。仿真结果表明该控制器相对于固定控制参数的控制器具有更好的控制效果,可控制车辆以较高车速行驶时达到较高跟踪精度和行驶稳定性。  相似文献   

10.
基于转角补偿的智能车辆循迹控制系统   总被引:1,自引:0,他引:1  
文中提出了一种转角补偿智能车辆循迹控制系统。系统由纯追踪控制器和转角补偿控制器组成。PP控制器直接控制车辆跟踪路径;转角补偿控制器基于PI控制理论,综合考虑行驶偏差及道路曲率进行转向角补偿,其参数采用模糊控制理论实现自适应调节,进一步改善系统跟踪性能。仿真和试验结果表明:较于传统PP循迹系统,该系统在不同车速下横向偏差峰值降低了50%以上,方向偏差峰值降低了20%以上,路径跟踪性能显著提升。  相似文献   

11.
当前实际应用中的车辆纵向自动跟随方法 ACC(自适应巡航)在应对小间距或速度频繁变化时,后车响应速度及队列跟随整体性不够理想。针对此类问题,充分考虑实际路况中车辆加速和制动性能的差异,研究一种通过V2V(车-车)通信接收动力输出差异信息的协同式纵向队列跟随控制方法,并结合车辆最小安全间距对实施过程进行了分析。最后对4辆不同车辆组成的纵向队列在Matlab/Simulink中进行仿真。实验结果表明,这里方法在车辆纵向队列行驶及间距调节过程中的车辆最大速度差及加速度绝对值较小,队列整体性较强。  相似文献   

12.
随着汽车工业的发展,汽车本身的安全性和智能性日益得到重视.目前,国内外已经有了很多有关汽车自适应驾驶的理论和实验.汽车的紧急避障是由计算机模拟驾驶员的主动控制过程,以汽车为控制对象进行实时信号采集、分析和处理,在紧急情况下可代替驾驶员的驾驶操作.现介绍模型小车自适应行驶和避障的一个实例,通过超声波传感器感知车辆行驶环境,实现小车的自适应巡航、避障等功能.  相似文献   

13.
寻迹控制作为自动驾驶车辆横向控制中最基本环节,其稳定性和跟踪精度通常与车速、转弯曲率等相关,直接影响车辆在复杂行驶工况中的安全性。为提高自动驾驶车辆在复杂工况下的稳定性和跟踪精度,结合路径规划、寻迹控制并考虑车辆稳定性提出基于自适应预瞄路径的自动驾驶车辆寻迹和避障控制方法。首先,基于车辆二自由度模型设计出预瞄距离自适应算法,其根据车辆动力学状态和路面附着调节预瞄距离;其次,通过三次多项式拟合方法给出给定预瞄距离下的预瞄路径;最后,基于避障能力、跟踪精度、车辆稳定性指标设计出粒子群优化算法(PSO),实现了算法参数的寻优。通过硬件在环试验和实车试验验证了算法在寻迹、换道和避障工况下效果,结果表明算法以小运算量实现了跟踪时的预瞄路径自适应调节,兼顾跟踪精度和车辆稳定性。  相似文献   

14.
设计一种经济自适应巡航控制器,用于降低道路车辆在跟随过程中的燃油消耗,提高行车安全.基于执行依赖启发式动态规划的方法控制车轮牵引力,从而保证安全行车所需的车辆间距.提出一种在线换挡控制策略来调整发动机的工作点,以改善发动机的燃油经济性.所提出的控制策略不依赖于车辆模型,可以适应不同的行驶工况.为验证控制器的有效性,分别进行城市道路循环工况和高速公路燃油经济性的仿真试验.仿真结果表明:该系统具有良好的速度跟踪性能和较高的燃油经济性.  相似文献   

15.
由于在不同行车环境下要求的性能指标不同,使得传统的参数固定自适应巡航控制器的应用受到限制,因此提出一种变权重的控制策略。基于模型预测控制原理,综合考虑安全性、舒适性、燃油经济性等控制目标,并通过分析车辆间的危险程度,采用模糊推理得到跟车性在控制目标中的权重大小,实现变权重的自适应巡航控制系统设计。通过与固定参数的普通控制器仿真对比,本策略能够面对复杂的行驶工况,在一定程度上提升了系统的适应性和安全性。  相似文献   

16.
在智能车辆路径跟踪控制研究中,提出了一种位置误差控制器,由期望横摆角速度生成器和模糊PID控制器组成。建立车辆的运动学及位置误差模型,在当前车辆质心与目标路径预瞄点间实时规划虚拟行驶路径。分析车辆沿虚拟路径行驶时期望横摆角速度的变化率的计算,代入车辆行驶状态及目标跟踪路径信息得到期望横摆角速度生成器。将期望横摆角速度生成器与模糊PID控制器结合,以双移线道路为目标跟踪路径进行联合跟踪仿真。仿真结果表明跟踪偏差主要发生在曲线道路与直线道路连接处,且车辆在低速下跟踪精度较高,稳定性好,中高速时跟踪精度及稳定性都降低。  相似文献   

17.
针对高速公路车辆安全行驶的需要,设计了一套智能型车辆主动安全系统;该系统具有两种工作模式:预警模式和巡航模式。预警模式采用"两级报警"及"自动制动"方式以避免车辆发生纵向追尾事故;巡航模式是在良好路面采用"恒速"巡航方式来降低驾驶疲劳程度,从而间接避免碰撞发生。两种模式的切换是通过模式转换开关实现的。经对系统性能进行模拟评价,并对"恒速"巡航模式进行仿真,表明该系统具有良好的工作性能和工程实用价值。  相似文献   

18.
为提高汽车行驶的主动安全性及减轻驾驶员的疲劳强度,提出了汽车巡航智能控制策略。基于模糊控制理论,给出了两种模式下的智能巡航控制理念并设计了汽车巡航模糊控制器,实现了巡航车节气门开度或制动踏板行程的自动触发与调节。以1.6L带有液力变矩器的自动档轿车实车试验数据为基础,结合多种城市道路运行工况,采用MATLAB/Simulink进行了巡航系统闭环反馈控制的仿真验证。结果表明:该策略能够有效地实现汽车主动跟随及走-停集成控制功能,说明该策略具有较好控制效果,为建立巡航系统d SPACE原型及产品的研发提供了理论参考。  相似文献   

19.
为了在满足乘坐舒适性的前提下提高智能车辆纵向车速跟随控制的精度,提出了一种具有自适应控制系统特性符合驾驶意图以及驾驶员行为特性的纵向控制策略.首先,设计油门和制动切换策略,依据期望车速计算期望加/减速度,并以此获得驾驶意图完成油门和制动的切换控制;其次,提出了一种基于模糊控制的制动控制策略;除此之外,设计了一种比例增益可调的PI油门控制策略.最后,将本文所设计的控制策略与目前普遍研究的PID车速跟踪控制策略分别进行NI实时系统仿真测试.结果表明:本文提出的基于驾驶员特性的车速跟踪控制器有效提高了对参考车速的跟踪精度以及乘坐舒适性.  相似文献   

20.
为了改善智能车辆轨迹跟踪过程中的行驶稳定性,针对四轮转向车辆提出了一种轨迹跟踪及稳定控制方法。首先建立了车辆三自由度动力学模型,然后应用模型预测控制算法设计轨迹跟踪控制器。考虑了四轮转向车辆的动力学特性和不同路面附着对轮胎侧偏角控制的影响,在跟踪算法中引入零质心侧偏角控制和动态轮胎侧偏角边界控制方法,实现车辆的稳定控制。最后,通过对接路面工况下的仿真,验证了所提出的控制方法能够保证车辆在轨迹跟踪过程中具有良好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号