首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
This paper investigates the problem of adaptive output‐feedback neural network (NN) control for a class of switched pure‐feedback uncertain nonlinear systems. A switched observer is first constructed to estimate the unmeasurable states. Next, with the help of an NN to approximate the unknown nonlinear terms, a switched small‐gain technique‐based adaptive output‐feedback NN control scheme is developed by exploiting the backstepping recursive design scheme, input‐to‐state stability analysis, the common Lyapunov function method, and the average dwell time (ADT) method. In the recursive design, the difficulty of constructing an overall Lyapunov function for the switched closed‐loop system is dealt with by decomposing the switched closed‐loop system into two interconnected switched systems and constructing two Lyapunov functions for two interconnected switched systems, respectively. The proposed controllers for individual subsystems guarantee that all signals in the closed‐loop system are semiglobally, uniformly, and ultimately bounded under a class of switching signals with ADT, and finally, two examples illustrate the effectiveness of theoretical results, which include a switched RLC circuit system.  相似文献   

2.
This paper presents a new method to improve the GBW (gain‐bandwidth product) on negative feedback amplifiers. The proposed method is based on the introduction of time‐delay elements in the feedback loop, which can be exploited to retrieve significant bandwidth enhancements. This delayed feedback concept is analyzed, and considerations are presented for first‐order amplifiers, based on theoretical analysis. The concept is simulated and further demonstrated in a practical example using a series‐shunt feedback amplifier with a TL081 operational amplifier (OA) and a 36‐m‐long coaxial cable as a delay element. Measured experimental results show a maximum bandwidth improvement of almost 90%, from a theoretical maximum of 141%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This study employed the equivalent‐input‐disturbance (EID) approach to devise a two‐loop power‐flow control system that controls the output current of an inverter so as to regulate the flow of active and reactive power between a distributed generation unit and a utility grid. It actively eliminates disturbances that degrade the power quality of a microgrid. The pq theory and an all‐pass filter are employed to generate an instantaneous reference current for the control system based on the prescribed active and reactive power of a utility grid terminal. The inner loop consists of a disturbance compensator and a state observer. The disturbance compensator uses information acquired from the state observer to estimate disturbances, such as drops and harmonics in the grid voltage, and compensates for them by incorporating the equivalent input disturbance into the control law. The outer loop consists of a resonance‐based internal model and a state‐feedback controller, which enables the output current of inverter to track the instantaneous reference current. The small‐gain theorem ensures the stability of the system. The system improves the power quality and guarantees that the flow of active and reactive power from the grid and inverter has low harmonic distortion. Simulations demonstrated the effectiveness of the system. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

4.
This paper presents a nonlinear gain feedback technique for observer‐based decentralized neural adaptive dynamic surface control of a class of large‐scale nonlinear systems with immeasurable states and uncertain interconnections among subsystems. Neural networks are used in the observer design to estimate the immeasurable states and thus facilitate the control design. Besides avoiding the complexity problem in traditional backstepping, the new nonlinear feedback gain method endows an automatic regulation ability into the pioneering dynamic surface control design and improvement in dynamic performance. Novel Lyapunov function is designed and rigorous stability analysis is given to show that all the closed‐loop signals are kept semiglobally uniformly ultimately bounded, and the output tracking errors can be guaranteed to converge to sufficient area around zero, with the bound values characterized by design parameters in an explicit manner. Simulation and comparative results are shown to verify effectiveness.  相似文献   

5.
This paper presents a systematic development of steady‐state, small‐signal models of interleaved dual boost converter operating in a continuous current mode. These models are derived by employing the well‐known signal flow graph method. This signal flow graph approach provides a means to directly translate the switching converter into its equivalent graphic model, from which a complete behaviour of the converter can easily be studied. Steady‐state performance, small‐signal characteristic transfer functions are derived using Mason's gain formula. The bode plots of audiosusceptibility, input impedance, output impedance, and control‐to‐output transfer functions are determined and illustrated using MATLAB for different values of load resistances, duty ratios. Small‐signal frequency responses obtained from the signal flow graph method are validated with PSPICE simulator results. To validate the signal flow graph modelling equations, sample steady‐state experimental results are provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
A novel circuit design technique is presented which improves gain‐accuracy and linearity in differential amplifiers. The technique employs negative impedance compensation and results demonstrate a significant performance improvement in precision, lowering sensitivity, and wide dynamic range. A theoretical underpinning is given together with the results of a demonstrator differential input/output amplifier with gain of 12 dB. The simulation results show that, with the novel method, both the gain‐accuracy and linearity can be improved greatly. Especially, the linearity improvement in IMD can get to more than 23 dB with a required gain. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes an input–output linearization‐based active power control strategy to maximize the energy production of a doubly fed induction generator (DFIG)‐based wind energy conversion system (WECS). The DFIG‐based wind turbine is a nonlinear system, and the nonlinear behavior will result in tracking errors. The proposed control strategy utilizing state feedback successfully deals with the nonlinear behavior existing in the WECS. Such a control will linearize the system input and output first. Then, the control loop and parameters can be designed by the linear system control algorithm. The simulations carried in MATLAB/Simulink demonstrate that the proposed control strategy is effective and promising. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

8.
Most previous advanced motion control of hydraulic actuators used full‐state feedback control techniques. However, in many cases, only position feedback is available, and thus, there are imperious demands for output‐feedback control for hydraulic systems. This paper firstly transforms a hydraulic model into an output feedback–dependent form. Thus, the K‐filter can be employed, which provides exponentially convergent estimates of the unmeasured states. Furthermore, this observer has an extended filter structure so that online parameter adaptation can be utilized. In addition, it is a well‐known fact that any realistic model of a hydraulic system suffers from significant extent of uncertain nonlinearities and parametric uncertainties. This paper constructs an adaptive robust controller with backstepping techniques, which is able to take into account not only the effect of parameter variations coming from various hydraulic parameters but also the effect of hard‐to‐model nonlinearities such as uncompensated friction forces, modeling errors, and external disturbances. Moreover, estimation errors that come from initial state estimates and uncompensated disturbances are dealt with via certain robust feedback at each step of the adaptive robust backstepping design. After that, a detailed stability analysis for the output‐feedback closed‐loop system is scrupulously checked, which shows that all states are bounded and that the controller achieves a guaranteed transient performance and final tracking accuracy in general and asymptotic output tracking in the presence of parametric uncertainties only. Extensive experimental results are obtained for a hydraulic actuator system and verify the high‐performance nature of the proposed output‐feedback control strategy.  相似文献   

9.
The use of positive feedback as a solution to intrinsic gain degradation in scaled CMOS technologies, such as 65 nm and below, is discussed in detail. Criteria for increasing gain while keeping the system stable are derived using a positive feedback amplifier model. These criteria are shown to provide significant gain enhancement in silicon. This work extends the previously reported DC gain analysis to include evaluation of additional effects of positive feedback as well an investigation of the frequency behavior using S‐parameter measurements in silicon. These S‐parameter measurements of fully differential positive feedback amplifiers designed in TSMC's 65 nm technology show gain enhancements of up to 26.7 dB at frequencies up to 8.5 GHz. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A general class of uncertain nonlinear systems with dynamic input nonlinearities is considered. The system structure includes a core nominal subsystem of triangular structure with additive uncertain nonlinear functions, coupled uncertain nonlinear appended dynamics, and uncertain nonlinear input unmodeled dynamics. The control design is based on dual controller/observer dynamic high‐gain scaling with an additional dynamic scaling based on a singular perturbation‐like redesign to address the non‐affine and uncertain nature of the input appearance in the system dynamics. The proposed approach yields a constructive global robust adaptive output‐feedback control design that is robust to the dynamic input uncertainties and to uncertain nonlinear functions allowed throughout the system structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, based on mathematical approaches and behavioral modeling of internal blocks, an algorithm of designing a continuous‐time delta‐sigma modulator (CT ΔΣM) with aggressive noise shaping is discussed. Using proposed methods, the coefficients of modulator can be calculated directly while the finite gain‐band‐width of amplifiers and rise/fall time of digital‐to‐analog convertors (DACs) in feedback path are included in the transfer function of CT loop filter. To decrease the number of amplifiers, a unique resonator is proposed. Also, an extra feedback DAC is introduced to further reduction of gain‐band‐width requirement of last amplifier. To verify the effectiveness of proposed methods, a fourth‐order, single loop, CT ΔΣM that benefits proportional‐integrator element for compensation of excess‐loop‐delay is realized in system and behavioral circuit levels. It has a 4‐bit quantizer, over‐sampling‐ratio of 10, and out‐of‐band‐gain of 12 dB. The peaking in signal‐transfer‐function is alleviated using a feed‐forward capacitor along with proper choosing of rest coefficients. The designed modulator has 78‐dB signal‐to‐noise‐ratio; even the non‐ideal behaviors of amplifiers and DACs are involved in simulations. Independent to sampling frequency, the proposed methods can be applied to other topologies of CT ΔΣMs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Transconductance of rail‐to‐rail input stages in low‐voltage operational amplifiers depends on the presence of a large common mode input signal. Corrections must be implemented in order to correct it. Nevertheless, techniques actually used, based on switching or feedforward, still give relevant deviation from the constant transconductance condition. In this paper we present a new architecture based on extraction and feedback to the gain control, directly of the value of the transconductance of the amplifier to be controlled. This quantity does not contain the signal to be amplified, and thus once fed back, it does not affect the overall stage gain. A ‘reciprocal’ circuit, which performs the 1/x mathematical function, is introduced in order to achieve this extraction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
We propose an adaptive output‐feedback controller for a general class of nonlinear triangular (strict‐feedback‐like) systems. The design is based on our recent results on a new high‐gain control design approach utilizing a dual high‐gain observer and controller architecture with a dynamic scaling. The technique provides strong robustness properties and allows the system class to contain unknown functions dependent on all states and involving unknown parameters (with no magnitude bounds required). Unlike our earlier result on this problem where a time‐varying design of the high‐gain scaling parameter was utilized, the technique proposed here achieves an autonomous dynamic controller by introducing a novel design of the observer, the scaling parameter, and the adaptation parameter. This provides a time‐invariant dynamic output‐feedback globally asymptotically stabilizing solution for the benchmark open problem proposed in our earlier work with no magnitude bounds or sign information on the unknown parameter being necessary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

15.
This paper proposes an adaptive neural‐network control design for a class of output‐feedback nonlinear systems with input delay and unmodeled dynamics under the condition of an output constraint. A coordinate transformation with an input integral term and a Nussbaum function are combined to solve the problem of the input possessing both time delay and unknown control gain. By utilizing a barrier Lyapunov function and designing tuning functions, the adjustment of multiparameters is handled with a single adaptive law. The uncertainty of the system is approximated by dynamic signal and radial basis function neural networks (RBFNNs). Based on Lyapunov stability theory, an adaptive tracking control scheme is developed to guarantee all the signals of the closed‐loop systems are semiglobally uniformly ultimately bounded, and the output constraint is not violated.  相似文献   

16.
Passivity is a widely used concept in control theory having led to many significant results. This paper concentrates on one characteristic of passivity, namely passification‐based adaptive control. This concept applies to multi‐input multi‐output systems for which exists a combination of outputs that renders the open‐loop system hyper‐minimum phase. Under such assumptions, the system may be passified by both high‐gain static output feedback and by a particular adaptive control algorithm. This last control law is modified here to guarantee its coefficients to be bounded. The contribution of this paper is to investigate its robustness with respect to parametric uncertainty. Time response characteristics are illustrated on examples including realistic situations with noisy output and saturated input. Theoretical results are formulated as linear matrix inequalities and can hence be readily solved with semi‐definite programming solvers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A simple gate‐driven scheme to reduce the minimum supply voltage of AC coupled amplifiers by close to a factor of two is introduced. The inclusion of a floating battery in the feedback loop allows both input terminals of the op‐amp to operate very close to a supply rail. This reduces essentially supply requirements. The scheme is verified experimentally with the example of a PGA that operates with ±0.18‐V supply voltages in 0.18‐μm CMOS technology and a power dissipation of about 0.15 μW. It has a 4‐bit digitally programmable gain and 0.7‐Hz to 2‐kHz true constant bandwidth that is independent on gain with a 25‐pF load capacitor. In addition, simulations of the same circuit in 0.13‐μm CMOS technology show that the proposed scheme allows operation with ±0.08‐V supplies, 7.5‐Hz to 8‐kHz true constant bandwidth with a 25‐pF load capacitor, and a total power dissipation of 0.07 μW.  相似文献   

18.
This paper presents a unified and exact nonaveraged approach to derive a frequency‐domain control‐oriented model for accurate prediction of the fast timescale dynamics and performances of switching converters with fixed frequency naturally sampled pulse width modulation and integrating feedback loop. Because the approach avoids averaging and approximations related to this process, a very good accuracy of the derived model is obtained. The main difference between the presented approach and the existing methodology for accurately predicting the behavior of switching converters is that, here, we break the feedback loop and we focus on analyzing the open‐loop gain and the effect of the system parameters on relative stability. This results in an approach much similar to control systems techniques rather than nonlinear dynamical system approaches. Consequently, the relative stability is tackled easily in the frequency domain. In particular, by treating the modulator as a gain depending on the operating point, the new model is formulated in such a way that standard control‐oriented tools such as Bode diagrams and root‐loci can be easily used. Therefore, the proposed approach gives some important issues like gain and phase margins that are highly useful in controller design. It is noticed that the crossover frequency, gain, and phase margins predicted by using the averaged model may deviate significantly from the actual values given by the proposed approach. The paper points out the sources of discrepancies and the theoretical results are validated by simulations using a circuit‐level switched model.  相似文献   

19.
This paper investigates an adaptive neural tracking control for a class of nonstrict‐feedback stochastic nonlinear time‐delay systems with input saturation and output constraint. First, the Gaussian error function is used to represent a continuous differentiable asymmetric saturation model. Second, the appropriate Lyapunov‐Krasovskii functional and the property of hyperbolic tangent functions are used to compensate the time‐delay effects, the neural network is used to approximate the unknown nonlinearities, and a barrier Lyapunov function is designed to ensure that the output parameters are restricted. At last, based on Lyapunov stability theory, a robust adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters and thus reduces the computational burden. It is shown that the designed neural controller can ensure that all the signals in the closed‐loop system are 4‐Moment (or 2 Moment) semi‐globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of the origin. Two examples are given to further verify the effectiveness of the proposed approach.  相似文献   

20.
Current mirror is one of the basic building blocks of analog VLSI systems. For high‐performance analog circuit applications, the accuracy and bandwidth are the most important parameters to determine the performance of the current mirror. This paper presents an efficient implementation of a CMOS current mirror suitable for low‐voltage applications. This circuit combines a shunt input feedback, a regulated cascade output and a differential amplifier to achieve low input resistance, high accuracy and high output resistance. A comparison of several architectures of this scheme based on different architectures of the amplifier is presented. The comparison includes: input impedance, output impedance, accuracy, frequency response and settling time response. These circuits are validated with simulation in 0.18µm CMOS TSMC of MOSIS. In this paper, a linear voltage to current converter, based on the adapted current mirror, is proposed. Its static and dynamic behaviour is presented and validated with the same technology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号