共查询到20条相似文献,搜索用时 15 毫秒
1.
Lenoble J Martin T Blumthaler M Philipona R Albold A Cabot T de La Casinière A Gröbner J Masserot D Müller M Pichler T Seckmeyer G Schmucki D Touré ML Yvon A 《Applied optics》2002,41(9):1629-1639
A measurement campaign was organized in March 1999 in the Bavarian Alps as part of the European project, Characteristics of the UV Radiation Field in the Alps (CUVRA), to analyze the effect of altitude, aerosols, and snow cover on ground-level UV spectral irradiance. We present the results of simultaneous measurements of aerosol optical depth (AOD) made at various sites on two cloudless days in March 1999. The two days exhibited different aerosol conditions. Results derived from spectral measurements of UV irradiance are compared with data from filter radiometer measurements made at discrete wavelengths extending from the UV to the near IR. The different methods generated values for the AOD that were in good agreement. This result confirms that one can use either method to retrieve the AOD with an uncertainty of approximately 0.03-0.05. On 18 March, high turbidity was observed at low altitude (400-nm AOD approximately 0.5 at 700 m above sea level), and the AOD decreased regularly with altitude; on 24 March, the turbidity was much less (0.11 at 700 m above sea level). On both days very low AODs (0.05-0.09) were measured at 3000 m above sea level. The spectral dependence of the AOD is often parameterized by the angstrom relationship; the alpha parameter is generally difficult or impossible to retrieve from spectral measurements because of the relatively narrow wavelength range (320-400 nm), and only one of the spectro-radiometers used during the campaign permits this retrieval. In most cases, during this field campaign, alpha was found by filter sunphotometers to be 1.1-1.5. 相似文献
2.
An approach is presented to estimate the surface aerosol radiative forcing by use of collocated cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Puerto Rico Dust Experiment 2000, South African Fire Atmosphere Research Initiative (SAFARI) 2000, and Aerosol Characterization Experiment-Asia 2001. We show that aerosol optical depths from the Multiple-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sunphotometer data for two SAFARI-2000 dates. The observed aerosol radiative forcings were interpreted on the basis of results from the Fu-Liou radiative transfer model, and, in some cases, cross checked with satellite-derived forcing parameters. Values of the aerosol radiative forcing and forcing efficiency, which quantifies the sensitivity of the surface fluxes to the aerosol optical depth, were generated on the basis of a differential technique for all three campaigns, and their scientific significance is discussed. 相似文献
3.
We formulate a procedure to investigate the sensitivity of surface reflectances retrieved from satellite sensor data to uncertainties in aerosol optical properties. Aerosol optical characteristics encompassed in the study include the aerosol optical depth, the Junge parameter (i.e., spectral dependence), and the imaginary part of the refractive index (i.e., aerosol absorption). The study includes both clear and hazy atmospheric conditions, wavelengths of 0.550 and 0.870 μm, three solar zenith angles, and five viewing geometries. Key results are presented graphically in terms of accuracy requirements on the aerosol property under consideration for a 5% uncertainty in predicted surface reflectance. 相似文献
4.
We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed. 相似文献
5.
We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements. 相似文献
6.
Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties 总被引:3,自引:0,他引:3
An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements. 相似文献
7.
Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements 总被引:1,自引:0,他引:1
Tropospheric aerosols have been observed for the period from November 1990 to April 1992 with a lidar, a sun photometer, and an optical particle counter. Variations of aerosol optical thickness derived from the lidar and the sun photometer data and measurements are presented. The simultaneous measurements of these instruments also allowed us to estimate the extinction-to-backscatter ratio (S(1)), which ranged from 20 to 70. Comparison of optical thicknesses derived from both instruments clearly shows the effect of Mt. Pinatubo's eruption and the temporal variation of optical thickness in the stratosphere over 12 km. The possible range of the complex refractive index for the columnar mean aerosols can be deduced from the probable range of S(1) derived by the use of an S(1) diagram as a function of complex refractive index (m). The imaginary part of m can be estimated provided that the real part of m is known. 相似文献
8.
9.
The modeled recycled aggregate concrete (MRAC) which is an idealized model for the real recycled aggregate concrete (RAC) was used in this study. The MRCAs prepared with two types of old mortars were modified by an accelerated carbonation process. The effects of carbonation of MRCA on the micro-hardness of MRCA and the mechanical properties of MRAC were investigated. The results indicated that the micro-hardness of the old interfacial transition zone (ITZ) and the old mortar in the carbonated MRCAs was higher than that in the uncarbonated MRCAs, and the enhancement of the old ITZ was more significant than that of the old mortar. The compressive strength and modulus of MRACs increased when the carbonated MRCAs were utilized, and the improvement was more significant for MRAC prepared with a higher w/c. In addition, a numerical study was carried out and it showed that the improvement in strength by carbonation treatment was less obvious when the difference between the new and old mortar was larger. 相似文献
10.
The multiangle imaging spectroradiometer (MISR) scheduled to be flown on the first platform of the Earth Observing System in 1998 provides an opportunity to enhance considerably the accuracy with which aerosol properties over the ocean can be retrieved through passive sensing from Earth orbit. As opposed to most radiometers in space that scan the earth in a plane normal to the subsatellite path, the MISR will scan the earth simultaneously in nine planes and thus provide the radiance exiting the atmosphere over a given pixel in nine different directions and at four wavelengths. We examine the problem of extracting the aerosol optical thickness (τ(a)) over the oceans from MISR data, and we produce two algorithms, a single-band algorithm and a spectral or two-band algorithm, for deriving τ(a). The algorithms are based on the use of realistic aerosol models as candidates on which to base an estimation of the aerosol optical properties. They take into account all orders of multiple scattering. Simulations suggest that for nonabsorbing or mildly absorbing aerosol (single-scattering albedo ω(a) > 0.90) the error in the recovered τ(a) is ? 10%, as long as the candidate models adequately cover the size refractive index distribution range of the expected aerosols. In the special case of a strongly absorbing aerosol (ω(a) ? 0.75), the error in τ(a) becomes large; however, the combination ω(a)τ(a) (the scattering optical thickness) can still be recovered with an error of ? 20%, although it is always underestimated. The reason for this decrease in accuracy is that multiple-scattering effects are a strong function of ω(a). A simple extension of the two-band algorithm permits the retrieval of the aerosol scattering phase function with surprising accuracy. 相似文献
11.
Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China 总被引:2,自引:0,他引:2
Aerosol optical properties were continuously measured with the National Institute for Environmental Studies (NIES) compact Raman lidar over Beijing, China, from 15 to 31 December 2007. The results indicated that in a moderate pollution episode, the averaged aerosol extinction below 1 km height was 0.39+/-0.15 km(-1) and the lidar ratio was 60.8+/-13.5 sr; in heavy pollution episode, they were 1.97+/-0.91 km(-1) and 43.7+/-8.3 sr; in an Asian dust episode, they were 0.33+/-0.11 km(-1) and 38.3+/-9.8 sr. The total depolarization ratio was mostly below 10% in the pollution episode, whereas it was larger than 20% in the Asian dust episode. The distinct characteristics of aerosol optical properties in moderate and heavy pollution episodes were attributed to the difference in air mass trajectory and the ambient atmospheric conditions such as relative humidity. 相似文献
12.
13.
Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes 总被引:8,自引:0,他引:8
A database management system has been realized that, by taking physical and chemical properties (the complex refractive index and the size distribution) of basic components as its starting point, allows the user to obtain optical properties of default as well as user-defined aerosol classes. Default classes are defined in accordance with the most widely known and used aerosol models. We obtain user-defined classes by varying the mixing ratio of components, creating new mixtures of default components, or by defining user components, thereby supplying the size distribution and the refractive index. The effect of relative humidity (RH) on the refractive index and the size distribution is properly accounted for up to RH = 99%. The two known mechanisms of obtaining classes from components are allowed (internal or external mixing). 相似文献
14.
15.
A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified. 相似文献
16.
Optical parameters of simulated ambient individual ammonium sulfate and soot-mixed particles were calculated using the discrete-dipole approximation method with different model geometries. Knowledge of the mixing state and the approximation by a suited idealized geometry reduces the errors of the optical properties by +/-50% to +/-10%. The influence of the soot content and the mixing state on the optical properties of the total aerosol was estimated. For the total aerosol population, the size distribution and the absolute soot content had the largest influence. The exact geometry of the ammonium sulfate and soot-mixed particles can be neglected. 相似文献
17.
A numerical model evaluating the response of a typical integrating nephelometer is described. The model incorporates the actual scattering geometry as well as the effects of a finite light source, detector size, and a nonideal Lambertian diffuser. An angular scattering weighting function is introduced to provide a tractable approach in numerical calculations and easy application. Using established size distribution ensembles associated with a few representative aerosol types, we compare the calculated response of a real nephelometer with that of an ideal, or perfect, nephelometer. The results indicate that, frequently, the nephelometer-produced aerosol-scattering coefficient is of the order of 10-20% too small; but for some naturally occurring aerosols, the difference may be as large as 40-50%. For a multiple-wavelength nephelometer, the response model can be employed to estimate the expected error in the aerosol-scattering coefficients directly from the measurements themselves. 相似文献
18.
Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption 总被引:2,自引:0,他引:2
Current atmospheric correction and aerosol retrieval algorithms for ocean color sensors use measurements of the top-of-the-atmosphere reflectance in the near infrared, where the contribution from the ocean is known for case 1 waters, to assess the aerosol optical properties. Such measurements are incapable of distinguishing between weakly and strongly absorbing aerosols, and the atmospheric correction and aerosol retrieval algorithms fail if the incorrect absorption properties of the aerosol are assumed. We present an algorithm that appears promising for the retrieval of in-water biophysical properties and aerosol optical properties in atmospheres containing both weakly and strongly absorbing aerosols. By using the entire spectrum available to most ocean color instruments (412-865 nm), we simultaneously recover the ocean's bio-optical properties and a set of aerosol models that best describes the aerosol optical properties. The algorithm is applied to simulated situations that are likely to occur off the U.S. East Coast in summer when the aerosols could be of the locally generated weakly absorbing Maritime type or of the pollution-generated strongly absorbing urban-type transported over the ocean by the winds. The simulations show that the algorithm behaves well in an atmosphere with either weakly or strongly absorbing aerosol. The algorithm successfully identifies absorbing aerosols and provides close values for the aerosol optical thickness. It also provides excellent retrievals of the ocean bio-optical properties. The algorithm uses a bio-optical model of case 1 waters and a set of aerosol models for its operation. The relevant parameters of both the ocean and atmosphere are systematically varied to find the best (in a rms sense) fit to the measured top-of-the-atmosphere spectral reflectance. Examples are provided that show the algorithm's performance in the presence of errors, e.g., error in the contribution from whitecaps and error in radiometric calibration. 相似文献
19.
20.
F.M. Hossain B.Z. Dlugogorski E.M. Kennedy I.V. Belova G.E. Murch 《Computational Materials Science》2011,50(3):1037-1042
The structural, electronic, optical properties and chemical bonding of dolomite CaMg(CO3)2 (rhombohedral calcite-type structure) are investigated using plane wave pseudopotential density-functional theory (DFT) method taking the local density approximation (LDA) and the generalized gradient approximation (GGA) as the exchange–correlation energy functional. The structural properties are consistent with the early experimental and theoretical results. The indirect electronic band gap is estimated to be ~5.0 eV, which is less than the optical band gap measured from the fundamental absorption edge of ~6.0 eV. The optical band gap is also consistent with the experimental band gap of similar calcite-type structure. A noticeable difference for the LDA and GGA derived transition peaks and a significant optical anisotropy are observed in the optical spectra. The analysis of electronic density of states, Mulliken charge and bonding population shows the coexistence of covalent and ionic bonding in the dolomite structure and the results are consistent with previous theoretical calculations. 相似文献