首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that specific activation of a cAMP-dependent protein kinase A (PKA) pathway resulted in complete repression of phenobarbital (PB)-inducible CYP gene expression in primary rat hepatocyte cultures. In the current investigation, we examined the role of protein phosphatase pathways as potential co-regulators of this repressive response. Primary rat hepatocytes were treated with increasing concentrations (0.1-25 nM) of okadaic acid, a potent inhibitor of serine/threonine-specific protein phosphatases PP1 and PP2A. PB induction responses were assessed by use of specific hybridization probes to CYP2B1 and CYP2B2 mRNAs. Okadaic acid completely inhibited the PB induction process in a concentration-dependent manner (IC50, approximately 1.5-2 nM). Similar repression was obtained with low concentrations of other highly specific phosphatase inhibitors, tautomycin and calyculin A. In contrast, exposure of hepatocytes to 1-nor-okadaone or okadaol, negative analogs of okadaic acid largely devoid of phosphatase inhibitory activity, was without effect on the PB induction process. At similar concentrations, okadaic acid produced only comparatively weak modulation of the beta-naphthoflavone-inducible CYP1A1 gene expression pathway. In additional experiments, hepatocytes were treated with suboptimal concentrations of PKA activators together with phosphatase inhibitors. Okadaic acid markedly potentiated the repressive effects of dibutyryl-cAMP on the PB induction process. Together, these results indicate that both PKA and protein phosphatase (PP1 and/or PP2A) pathways exert potent and complementary control of the intracellular processes modulating the signaling of PB in cultured primary rat hepatocytes.  相似文献   

2.
We observed that glutathione (GSH) status regulates the Ah receptor inducible cytochrome P4501A (CYP1A) gene expression and catalytic activity in 3,3',4,4'-tetrachlorobiphenyl (TCB) exposed rainbow trout. Tissue GSH status of TCB (1 mg/kg body weight, in corn oil) injected fish was manipulated by a) injecting (i.p.) GSH (0.25 g/kg), b) arresting GSH synthesis by L-buthionine-[S,R]-sulfoximine (BSO; 6 mmol/kg) injection for 3 and 6 days. Our attempt to manipulate GSH levels by lipoate supplementation (16 mg/kg) was not productive. Both BSO- and lipoate-supplemented fish maintained a low tissue redox (GSSG/GSH) ratio. Activities of glutathione peroxidase and glutathione reductase were elevated following 3 days of GSH supplementation in GSH rich tissues. Low activities of these enzymes were observed in BSO treated GSH deficient tissues. TCB injection markedly induced hepatic and renal CYP1A catalytic (ethoxyresorufin O-deethylase [EROD]) activities. This effect was further potentiated (3-fold) in GSH-supplemented fish tissues. In contrast, EROD induction by TCB was markedly suppressed in GSH deficient (BSO-treated) and lipoate-supplemented fish. The suppression of CYP1A catalytic activities in GSH deficient and lipoate-supplemented fish was consistently associated with a suppression of TCB induced CYP1A mRNA and protein expressions in these groups. In glutathione-supplemented fish, TCB induced CYP1A protein expression was markedly higher following 3 days of GSH supplementation. Results of our study suggest that tissue thiol status modulates cytochrome P450 CYP1A gene expression and catalytic activity.  相似文献   

3.
Knowledge of the response of cytochrome P450 1B1 (CYP1B1) to exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in both humans and rodents is limited. To improve the analysis of CYP1 proteins, specific CYP1B1 and CYP1A1 polypeptides were expressed as hexahistidine-tagged fusion proteins in Escherichia coli, purified to homogeneity and used to produce polyclonal antibodies in rabbits. Immunoblot analyses showed that these antibodies were specific and sensitive, detecting both the human and rat forms of the respective isozymes and exhibiting negligible cross-reactivity between the two known CYP1 subfamilies. We show that CYP1B1, CYP1A1 and CYP1A2 protein levels were induced in the livers of female Sprague-Dawley rats following either acute (single dose of 25 microg TCDD/kg) or chronic (125 ng TCDD/kg/day for 30 weeks) exposure to TCDD. CYP1B1 protein exhibited a dose-response to TCDD that was different from those of CYP1A1 and CYP1A2. CYP1B1 induction appeared to be less sensitive to TCDD exposure, with induction occurring at higher doses of TCDD than that required for induction of CYP1A1 or CYP1A2. Immunohistochemical analysis showed that in animals chronically exposed to TCDD (35 ng/kg/day for 30 weeks), CYP1B1 was induced only in centrilobular hepatocytes, a pattern of expression similar to that of CYP1A1 and CYP1A2. These observations of cellular co-localization of the CYP1 cytochromes in livers of TCDD-treated rats and apparent differences in both protein amounts and dose-response are indicative of both common and unique regulation of CYP1 induction.  相似文献   

4.
5.
6.
One of the current knowledge gaps in the evaluation of risk for human exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the relationship between gene expression induced by TCDDmore complex biological responses such as altered growth, differentiation, and neoplasia. This study investigates the dose-dependent expression of CYP1A1, CYP1A2,CYP1B1 in the livers of female Sprague-Dawley rats chronically exposed to TCDD. Animals were treated biweekly for 30 weeks with daily averaged doses of 0 to 125 ng TCDD/kg/day. Immunoblot analysis showed that protein levels for CYP1B1, CYP1A1, CYP1A2 exhibited a dose-dependent induction by TCDD. However, CYP1A1 and CYP1A2 protein levels were approximately 100-fold higher than CYP1B1, which could not be detected by either immunoblot analysis or immunohistochemistry in the livers of rats treated with TCDD for 30 weeks at a dose-equivalent less than 35.7 ng/kg/day. In control animals, CYP1A1CYP1A2 RNA levels, measured by quantitative RT-PCR, were 1100-15,000-fold higher than that of CYP1B1, respectively. TCDD induced CYP1B1 RNA levels at all doses, although absolute TCDD-induced levels of CYP1A1CYP1A2 at the highest dose (125 ng/kg/day) were more than 40-fold higher than that of CYP1B1. While the liver concentration of TCDD required for half-maximal induction of CYP1A1, CYP1A2,CYP1B1 RNA levels was similar, the shaping parameter (Hill coefficient) of the dose-response curve for CYP1B1 was significantly higher than that for CYP1A1 or CYP1A2. The low level of TCDD-induced CYP1B1 expression in the liver relative to that of the CYP1A1CYP1A2 suggest that, if CYP1B1 is involved in TCDD-induced hepatocarcinogenesis, its endogenous function is likely to be uniquenot overlapping with that of CYP1A1 or CYP1A2.  相似文献   

7.
Human microsomal epoxide hydrolase (mEH; EC 3.3.2.3) is an important biotransformation enzyme and potential risk determinant for pathologies such as cancer and teratogenesis. Currently, the effects of chemical exposures on human mEH gene expression are largely unknown, but they may constitute a unique modifier of disease susceptibility. To examine this issue, we exposed cultures of primary human hepatocytes isolated from seven donors to prototypic chemical inducers [such as phenobarbital (PB), polyaromatic hydrocarbons, dexamethasone, butylated hydroxyanisole, and ciprofibrate]. Basal levels of mEH RNA and protein were detected readily in untreated cells. Chemical treatment of cultured hepatocytes resulted in variable mEH RNA and protein expression, but, in general, only modest modulatory effects were detected following these exposures. The maximum increase in mEH RNA expression observed was approximately 3.5-fold following Arochlor 1254 exposure. Immunochemical levels of mEH protein were quantified for all treatment groups in three cultures and demonstrated less overall variation and, in general, a lack of concordance with corresponding mEH RNA levels. Cytochrome P450 (CYP) 1A2 and 3A mRNA levels were measured before and following exposure to beta-naphthaflavone and PB, respectively, to permit independent evaluation of hepatocyte inducer responsiveness. Substantial increases in RNA expression levels for both the CYP1A2 and CYP3A genes demonstrated that the hepatocyte cultures were robust and highly responsive to inducer treatment. These results indicate that the mEH gene in human hepatocytes is only modestly responsive to chemical exposures.  相似文献   

8.
A well-characterized primary rat hepatocyte culture system was used to examine induction patterns of cytochrome 450 gene expression by a series of 4-n-alkyl-methylenedioxybenzene (MDBs) derivatives. Hepatocytes were treated for 24, 48, or 72 hours with 0-500 microM of the MDB compounds, and total cellular RNA and protein from each treatment was evaluated by hybridization and immunochemical techniques. Exposure to MDB congeners possessing increasing 4-n-alkyl side-chain length (C0-C8) resulted in dose- and structure-dependent activation of CYP2B1, 2B2, 3A1, 1A1, and 1A2 gene expression. At equivalent 100 microM concentrations, the C6 and C8 MDB congeners were more effective than the prototypical inducer phenobarbital (PB) with respect to induction potency of CYP2B1, CYP2B2, and CYP3A1 gene expression. In contrast to PB, longer side-chain-substituted MDBs effectively induced CYP1A1 and CYP1A2 gene expression, in addition to the CYP2B and CYP3A genes. At equivalent molar concentrations, the catechol derivative of C6-MDB was ineffective in its ability to induce CYP gene expression, indicating the importance of the intact methylenedioxy bridge in the induction mechanism. Levels of MDB-inducible CYP2B1 and CYP2B2 mRNA were highly correlated with CYP2B1/2 apoprotein levels, ascertained by immunoblot analysis of cultured hepatocyte S9 fractions. Compared with results from previous in vivo analysis (12), the current data indicate that pharmacodynamic factors may influence MDB induction profiles and that differences in MDB effects on CYP gene expression result depending on distinct structure-activity relationships.  相似文献   

9.
10.
Cytochromes P450 (P450s or CYPs) constitute a superfamily of heme-thiolate proteins that play important roles in oxidative metabolism of endogenous and exogenous compounds. This review provides some limited history but addresses mainly the research progress on the cytochrome P450s in rainbow trout (Oncorhynchus mykiss), their purification, structures at the primary level, role in metabolism, responses to chemicals and environmental pollutants, application to biomonitoring and the effect of various factors on their expression or activities. Information obtained to date suggests that the rainbow trout P450 systems are as complex as those seen in mammals. Fourteen P450s have been purified from liver or trunk kidney to relatively high specific content. cDNAs belonging to seven different P450 families have been documented from trout liver, kidney and ovary. Two CYP1A genes, nine cDNAs containing open reading frames, and a cDNA fragment were entered into GenBank. Among them, CYP2K1, CYP2K3, CYP2K4, CYP2M1, CYP3A27 and CYP4T1 are the most recently described forms. CYP2K1, CYP2M1 and CYP4T1 represent newly identified P450 subfamilies first described in the rainbow trout. In many cases, the cloned rainbow trout P450s have subsequently been expressed in heterologous expressions systems such as COS-7 cells, yeast and baculovirus infected insect cells. Some of the overexpressed P450 isoforms have been partially characterized. Potential future research directions are discussed.  相似文献   

11.
The utilization of precision-cut liver slices in dynamic organ culture as an in vitro model was validated by comparing the induction of the biomarker responses following in vitro (rat liver slice) and in vivo exposure of rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The biomarker responses investigated were cytochrome P450s 1A1 and 1A2 (CYP1A1 and CYP1A2) mRNA, protein, and activities. Precision-cut rat liver slices were incubated in dynamic organ culture for 24 hr with medium containing 0.001-10 nM TCDD or medium without TCDD (control). The resultant mean TCDD concentration in the slices ranged from 19 to 80,925 ppt (wet wt), respectively. A concentration-dependent induction of CYP1A1 mRNA, protein, and activities and a more modest induction of CYP1A2 mRNA was observed in liver slices at all medium concentrations of TCDD. The O-demethylation of 7-methoxyresorufin, a marker for CYP1A2 activity, was induced at TCDD medium levels of 0.01 nM and greater, whereas a detectable increase in CYP1A2 protein occurred only at the higher concentrations. Comparable liver concentrations of TCDD (8-64,698 ppt wet wt) were achieved at 24 hr following a single in vivo exposure of rats to TCDD at doses ranging from 0.002 to 5 microg/kg po. Concentration-effect and dose-response relationships for induction of CYP1A1 and CYP1A2 were similar following in vitro and in vivo exposure to TCDD, although the magnitude of induction was greater for in vivo exposure. The data support the use of liver slices in dynamic organ culture for assessing the relative in vivo potency of a compound to induce CYP1A1 and CYP1A2. Human tissue can also be readily utilized in this in vitro model to predict the biological and toxicological effects of a given in vivo exposure to TCDD.  相似文献   

12.
13.
The purpose of the present study was to study the mechanisms involved in the induction of apoptosis and by tributyltin (TBT) in rainbow trout hepatocytes, and to examine the role of intracellular Ca2+, protein kinase C (PKC) and proteases in the apoptotic process. The intracellular Ca2+ chelator BAPTA-AM has a suppressive effect on TBT-mediated apoptosis. However, exposure to the ionophore A23187 is not sufficient to induce apoptosis in trout hepatocytes. The results obtained also show that TBT stimulates PKC gamma and delta translocation from cytosol to the plasma membrane in trout hepatocytes after 30 min of exposure. However, PKC gamma translocation is down-regulated after 90 min of treatment. The addition of protein kinase inhibitors (staurosporine and H-7) not only fails to inhibit apoptosis induced by TBT, but also leads to enhancement of DNA fragmentation. These inhibitors also afford a remarkable protection against the loss of plasma membrane integrity caused by TBT exposure. PMA, a direct activator of PKC, fails to stimulate DNA fragmentation. In addition, Z-VAD.FMK is an extremely potent inhibitor of TBT-induced apoptosis in trout hepatocytes, indicating that the activation of ICE-like proteases is a key event in this process. The cysteine protease inhibitor N-ethylmaleimide also prevented TBT-induced DNA fragmentation. Taken together, these data allow for the first time to suggest a mechanistic model of TBT-induced apoptosis. We propose that TBT could trigger apoptosis through a step involving Ca2+ efflux from the endoplasmic reticulum or other intracellular pools and by mechanisms involving cysteine proteases, such as calpains, as well as the phosphorylation status of apoptotic proteins such as Bcl-2 homologues.  相似文献   

14.
15.
BACKGROUND: Production of heat shock protein 70 (HSP70) in the heart is induced by hemodynamic stress, but its intracellular signal transduction system has not been elucidated well. OBJECTIVE: To investigate the hypothesis that protein kinase A (PKA)-dependent and protein kinase C (PKC)dependent systems are involved in the pressure-induced expression of HSP70 mRNA in perfused adult rat heart METHODS: Isolated tetrodotoxin-arrested Sprague-Dawley rat hearts were perfused as Langendorff preparations at a constant aortic pressure of 60 mmHg. Aortic pressure in rats of the pressure-overloaded group was elevated from 60 to 120 mmHg for 2-120 min. cAMP contents and rates of synthesis of protein were measured by radioimmunoassay and the incorporation of [14C]-phenylalanine into total heart protein, respectively. Expression of HSP70 mRNA was determined by Northern blot analysis. RESULTS: Elevation of aortic pressure significantly increased cAMP content after 2 min of perfusion (by 41%), significantly increased rates of synthesis of protein during the second hour of perfusion (by 41%), and induced expression of HSP70 mRNA maximally after 60 min of perfusion (2.7-fold the control value). Exposure to glucagon, forskolin or 1 -methyl-3-isobutylxanthine mimicked increases in these parameters caused by elevation of aortic pressure. Administration of a selective PKA inhibitor, H-89, significantly prevented induction of increases in expression of HSP70 mRNA and rates of synthesis of protein by a high pressure overload and exposure to agents that increase cAMP content. Furthermore, administration of phorbol ester induced expression of HSP70 mRNA. Administration of a PKC inhibitor, calphostin C, significantly prevented induction of increases in expression of HSP70 mRNA by a pressure overload and by exposure to phorbol ester. CONCLUSIONS: These results suggest that the pressure-induced induction of production of HSP70 is regulated both by PKA-dependent and by PKC-dependent systems during periods of active synthesis of protein in adult rat heart.  相似文献   

16.
Expression of the angiotensin II type 1 receptor (AT1-R) mRNA in vascular smooth muscle cells (VSMC) is down-regulated by a variety of agonists, including growth factors, agonists of Galphaq protein-coupled receptors, and activators of adenylyl cyclase. To determine whether cAMP-dependent protein kinases (PKA) participates in AT1-R mRNA down-regulation controlled by multiple classes of receptors, a PKA inhibitor peptide (PKIalpha) was developed and expressed in rat VSMC as a fusion with the enhanced green fluorescent protein (eGFP). PKA activity elicited both by forskolin and angiotensin II is suppressed in cells expressing this fusion protein (PKIalpha-eGFP), but platelet-derived growth factor-BB does not stimulate PKA activity in this preparation. PKIalpha-eGFP expression fully inhibits the forskolin-stimulated down-regulation of AT1-R mRNA levels and blocks 50% of the effect elicited by angiotensin II. This indicates that PKA plays a substantial role in angiotensin II-stimulated AT1-R mRNA down-regulation. However, inhibition of PKA has no effect on AT1-R mRNA down-regulation caused by platelet-derived growth factor-BB. These findings show how agonists such as angiotensin II that are not normally considered as activators of PKA can use PKA-dependent processes to modulate gene expression. These findings also provide definitive evidence that PKA-dependent pathways are involved in modulation of AT1-R mRNA levels in VSMC.  相似文献   

17.
18.
19.
A physiologically based pharmacokinetic (PBPK) model for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was combined with a five-compartment geometric model of hepatic zonation to predict both total and regional induction of CYP450 proteins within the liver. Three literature studies on TCDD pharmacokinetics and protein induction in female rats were analyzed. In simulating low-dose behavior for mRNA in whole liver and, particularly, in representing immunohistochemical observations, the five-compartment model was more successful than conventional homogeneous one-compartment liver models. The five-compartment liver model was used with the affinity of TCDD for the Ah receptor (AhR) held constant across all the liver (Kb = 0.2 nM). The presumed affinities of the AhR-TCDD complex for TCDD responsive elements in the CYP1A1 (Kd1) and CYP1A2 (Kd2) genes varied between adjacent compartments by a factor of 3. This parameterization leads to predicted 81-fold differences in affinities between the centrilobular and the periportal regions. The affinities used for AhR-TCDD complex binding to TCDD response elements for CYP1A2 in compartment 3 (the midzonal area) ranged from 0.08 to 1.0 nM in the three studies modeled. For CYP1A1 the corresponding dissociation constant in compartment 3 varied from 0.6 to 2.0 nM. In each compartment, the Hill coefficient for induction had to be 4 or greater to match the immunohistochemical results. This multi-compartment liver model is consistent with data on protein and mRNA induction throughout the liver and on the regional distribution of these proteins. No previous model has incorporated regional variations in induction. The PBPK analysis based on the multicompartment liver model suggests that the low-dose behavior for hepatic CYP1A1/CYP1A2 induction by TCDD is highly non-linear.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号