首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new 1-aryl-4-alkylpiperazines containing a terminal benzamide fragment or a tetralin-1-yl nucleus on the alkyl chain were synthesized and tested for binding at cloned human dopamine D4 and D2 receptor subtypes. A SAFIR (structure-affinity relationship) study on this series is herein discussed. The most relevant D4 receptor affinities were displayed by N-[omega-[4-arylpiperazin-1-yl]alkyl]-methoxybenzamides (compounds 5, 16-20), their IC50 values ranging between 0.057 and 7.8 nM. Among these, N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (17) emerged since it exhibited very high affinity for dopamine D4 receptor (IC50 = 0.057 nM) with selectivity of >10 000 for the D4 versus the D2 receptor; compound 17 was also selective versus serotonin 5-HT1A and adrenergic alpha1 receptors.  相似文献   

2.
The novel benzoindane S 18126 possessed > 100-fold higher affinity at cloned, human (h) D4 (Ki = 2.4 nM) vs. hD2 (738 nM), hD3 (2840 nM), hD1 (> 3000 nM) and hD5 (> 3000 nM) receptors and about 50 other sites, except sigma1 receptors (1.6 nM). L 745,870 similarly showed selectivity for hD4 (2.5 nM) vs. hD2 (905 nM) and hD3 (> 3000 nM) receptors. In contrast, raclopride displayed low affinity at hD4 (> 3000 nM) vs. hD2 (1.1 nM) and hD3 receptors (1.4 nM). Stimulation of [35S]-GTPgammaS binding at hD4 receptors by dopamine (DA) was blocked by S 18126 and L 745,870 with Kb values of 2.2 and 1.0 nM, respectively, whereas raclopride (> 1000 nM) was inactive. In contrast, raclopride inhibited stimulation of [35S]-GTPgammaS binding at hD2 sites by DA with a Kb of 1.4 nM, whereas S 18126 (> 1000 nM) and L 745,870 (> 1000 nM) were inactive. As concerns presynaptic dopaminergic receptors, raclopride (0.01-0.05 mg/kg s.c. ) markedly enhanced DA synthesis in mesocortical, mesolimbic and nigrostriatal dopaminergic pathways. In contrast, even high doses (2. 5-40.0 mg/kg s.c.) of S 18126 and L 745,870 were only weakly active. Similarly, raclopride (0.016 mg/kg i.v.) abolished inhibition of the firing rate of ventrotegmental dopaminergic neurons by apomorphine, whereas even high doses (0.5 mg/kg i.v.) of S 18126 and L 745,870 were only weakly active. As regards postsynaptic dopaminergic receptors, raclopride potently (0.01-0.3 mg/kg s.c.) reduced rotation elicited by quinpirole in rats with unilateral lesions of the substantia nigra, antagonized induction of hypothermia by PD 128, 907, blocked amphetamine-induced hyperlocomotion and was effective in six further models of potential antipsychotic activity. In contrast, S 18126 and L 745,870 were only weakly active in these models (5.0-> 40.0 mg/kg s.c.). In six models of extrapyramidal and motor symptoms, such as induction of catalepsy, raclopride was likewise potently active (0.01-2.0 mg/kg s.c.) whereas S 18126 and L 745,870 were only weakly active (10.0-80.0 mg/kg s.c.). In freely moving rats, raclopride (0.16 mg/kg s.c.) increased levels of DA by + 55% in dialysates of the frontal cortex. However, it also increased levels of DA in the accumbens and striatum by 70% and 75%, respectively. In contrast to raclopride, at a dose of 0.16 mg/kg s.c. , neither S 18126 nor L 745,870 modified frontal cortex levels of DA. However, at a high dose (40.0 mg/kg s.c.), S 18126 increased dialysate levels of DA (+ 85%) and noradrenaline (+ 100%), but not serotonin (+ 10%), in frontal cortex without affecting DA levels in accumbens (+ 10%) and striatum (+ 10%). In conclusion, S 18126 and L 745,870 behave as potent and selective antagonists of cloned, hD4 vs. other dopaminergic receptor types in vitro. However, their in vivo effects at high doses probably reflect residual antagonist actions at D2 (or D3) receptors. Selective blockade of D4 receptors was thus associated neither with a modification of dopaminergic transmission nor with antipsychotic (antiproductive) or extrapyramidal properties. The functional effects of selective D4 receptor blockade remain to be established.  相似文献   

3.
The development of a synthetic approach to the novel pyrrolo[2, 1-b][1,3]benzothiazepine and its derivatives and their biological evaluation as potential antipsychotic drugs are described. In binding studies these compounds proved to be potent 5-HT2, D2, and D3 receptor ligands. The more potent benzothiazepine (+/-)-3b was resolved into its enantiomers by using HPLC techniques. In vitro testing confirmed that (-)-3b is a more potent D2 receptor ligand, maintaining high affinity for 5-HT2 receptors. In contrast, the (+)-3b enantiomer presents a 35 times higher affinity for 5-HT2 than for dopamine D2 receptors with a similar dopamine D1 receptor affinity to that of (-)-3b. Overall, (+)-3b shows an "atypical" neuroleptic binding profile, while (-)-3b has a more "classical" profile. Furthermore pharmacological and biochemical testing displayed that the novel benzothiazepine (+/-)-3b is able to increase the extracellular levels of dopamine in the rat striatum and causes a dose-related suppression of apomorphine-induced locomotor activity. At low doses (+/-)-3b does not induce catalepsy, showing atypical antipsychotic properties similar to those of olanzapine. These heterocyclic compouds represent new leads for the development of novel antipsychotic drugs with atypical properties.  相似文献   

4.
SK&F 96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenylethyl]-1H-imi dazole hydrochloride) stimulated the accumulation of [3H]inositol monophosphates ([3H]IP1) in human U373 MG astrocytoma cells prelabelled with [3H]inositol (EC50 15 +/- 1 microM, Hill coefficient 3.8 +/- 0.4). SK&F 96365-induced accumulation of [3H]IP1 increased linearly with time, but there was no initial rapid formation of [3H]IP3. SK&F 96365 also stimulated [3H]IP1 accumulation in human HeLa cells, but only to a small extent in slices of rat cerebral cortex and guinea-pig cerebellum. SK&F 96365-induced accumulation of [3H]IP1 in U373 MG cells increased as extracellular Ca2+ was increased from nominally zero to 4 mM, but there was no evidence that SK&F 96365 induced any marked entry of Ca2+ into cells; only an inhibition of store-refilling-induced Ca2+ entry was apparent. Further, the response to SK&F 96365 was additive with that to the Ca2+ ionophore ionomycin. Depolarization of the cells with raised K+ produced only a small stimulation of phosphoinositide hydrolysis. SK&F 96365 caused the release of Ca2+ from intracellular stores in U373 MG cells (EC50 26 +/- 14 microM), but thapsigargin induced only a small accumulation of [3H]IP1. Miconazole, another N-substituted imidazole, also stimulated [3H]IP1 accumulation in U373 cells.  相似文献   

5.
In the present paper, we report the synthesis and the binding profile on 5-HT1A, alpha1 and D2 receptors of a new series of 1-[omega-(4-arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene)- 2, 5-pyrrolidinediones (III) (1-4) and -3-(9H-fluoren-9-ylidene)-2, 5-pyrrolidinediones (IV) (1-4), in which the alkyl linker contains 1-4 methylenes and the aryl group is variously substituted. The results obtained are compared to those previously reported for bicyclohydantoin (I) and the related bicyclic amine (II) series. A considerable part of the tested compounds 1-4 demonstrated moderate to high affinity for 5-HT1A and alpha1 receptor binding sites but had no affinity for D2 receptors. The study of the length of the alkyl chain and the imide substructure has allowed us to suggest some differences between the 5-HT1A and the alpha1-adrenergic receptors: (i) for III and IV, affinity for the 5-HT1A receptor as a function of the length of the methylene linker decreases in the order 4 > 1 > 3 approximately 2, while for the alpha1 receptor affinity decreases in the order 3 approximately 4 > 1 approximately 2; (ii) the no-pharmacophoric steric pocket (receptor zone which does not hold the pharmacophore of the ligand but holds a nonessential fragment of the molecule) in the 5-HT1A receptor has less restriction than the corresponding pocket in the alpha1 receptor. Compounds 3a,e, which are highly selective for alpha1-adrenergic receptors, displayed antagonist activity. On the other hand, the best compromise between affinity and selectivity for 5-HT1A receptors is reached in these new series with n = 1, which is in agreement with our previous results for the bicyclohydantoin derivatives I. Two selected compounds (1d and 4e) retain agonist properties at postsynaptic 5-HT1A receptors. The same 5-HT1A agonist profile found in these compounds suggests the existence of two different no-pharmacophoric steric pockets in this receptor and a different interaction of compounds with n = 1 and n = 4. The information obtained from the interpretation of the energy minimization and 2D-NOESY experiments of compounds 1-4 together with the synthesis and binding data of new conformationally restrained analogues 4k-m is in good agreement with this working hypothesis.  相似文献   

6.
7.
S 16924 showed a pattern of interaction at multiple (>20) native, rodent and cloned, human (h) monoaminergic receptors similar to that of clozapine and different to that of haloperidol. Notably, like clozapine, the affinity of S 16924 for hD2 and hD3 receptors was modest, and it showed 5-fold higher affinity for hD4 receptors. At each of these sites, using a [35S]GTPgammaS binding procedure, S 16924, clozapine and haloperidol behaved as antagonists. In distinction to haloperidol, S 16924 shared the marked affinity of clozapine for h5-HT2A and h5-HT2C receptors. However, an important difference to clozapine (and haloperidol) was the high affinity of S 16924 for h5-HT1A receptors. At these sites, using a [35S]GTPgammaS binding model, both S 16924 and clozapine behaved as partial agonists, whereas haloperidol was inactive. In vivo, the agonist properties of S 16924 at 5-HT1A autoreceptors were revealed by its ability to potently inhibit the firing of raphe-localized serotoninergic neurones, an action reversed by the selective 5-HT1A receptor antagonist, WAY 100,635. In contrast, clozapine and haloperidol only weakly inhibited raphe firing, and their actions were resistant to WAY 100,635. Similarly, S 16924 more potently inhibited striatal turnover of 5-HT than either clozapine or haloperidol. Reflecting its modest affinity for D2 (and D3) autoreceptors, S 16924 only weakly blocked the inhibitory influence of the dopaminergic agonist, apomorphine, upon the firing rate of ventrotegmental area-localized dopaminergic neurones. Further, S 16924 only weakly increased striatal, mesolimbic and mesocortical turnover of dopamine (DA). Clozapine was, similarly, weakly active in these models, whereas haloperidol, in line with its higher affinity at D2 (and D3) receptors, was potently active. In the frontal cortex (FCX) of freely moving rats, S 16924 dose-dependently reduced dialysate levels of 5-HT, whereas those of DA and NAD were dose-dependently increased in the same samples. In contrast, although S 16924 also suppressed 5-HT levels in the striatum and nucleus accumbens, DA levels therein were unaffected. Clozapine mimicked this selective increase in DA levels in the FCX as compared to striatum and accumbens. In contrast, haloperidol modestly increased DA levels in the FCX, striatum and accumbens to the same extent. In distinction to S 16924, clozapine and haloperidol exerted little influence upon 5-HT levels. Finally, the influence of S 16924 upon FCX levels of 5-HT, DA (and NAD) was attenuated by WAY 100,635. In conclusion, S 16924 possesses a profile of interaction at multiple monoaminergic receptors comparable to that of clozapine and distinct to that of haloperidol. In addition, S 16924 is a potent, partial agonist at 5-HT1A receptors. Correspondingly, acute administration of S 16924 decreases cerebral serotoninergic transmission and selectively reinforces frontocortical as compared to subcortical dopaminergic transmission. In line with these actions, S 16924 shows a distinctive profile of activity in functional (behavioral) models of potential antipsychotic activity (companion paper).  相似文献   

8.
Methods for the synthesis of each of the four stereoisomers of 6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]oc tane (10, 11, 12, and 13) and 3-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[2.2.1]he ptane (18, 19, 20, and 21), and the two stereoisomers of 3-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[2.2.2]oc tane (27 and 28) were developed. The relative configuration of the compounds was determined on the basis of previously described 1H NOE experiments, and the absolute configuration of 6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]oc tanes (10, 11, 12, and 13) and 3-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[2.2.2]oc tane (27 and 28) was determined by single crystal X-ray crystallography. Optical purity was determined by capillary electrophoresis (CE) using chiral selectors as trimethyl-beta-cyclodextrin and heparin dissolved in the running buffer. All the 3-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicycles had low nanomolar affinity for muscarinic receptors as determined by displacement of radiolabelled oxotremorine-M (3H-Oxo-M) and pirenzepine (3H-Pz) from cortical rat brain homogenates. The binding assay discriminated between diastereomers, but only a minor degree of enantioselectivity was observed in the binding assays.  相似文献   

9.
In this study, we synthesized a series of (S)-N-(3-pyrrolidinyl)benzamide derivatives, 1, 2a-d, 5a-1, and 7, and their enantiomers, (R)-1 and (R)-5c-e, and evaluated their binding affinity for cloned dopamine D2, D3, and D4 receptors and their inhibitory activity against apomorphine-induced climbing behavior in mice. The results indicate that D2, D3, and D4 receptors have different bulk tolerance (D4 > D3 > D2) for the substituent of the 4-amino group (R1) on the benzamide nuclei and that cyclopropyl-, cyclobutyl-, and cyclopentylcarbonyl groups likely possess adequate bulkiness with respect to D3 and D4 affinity and selectivity over D2 receptors in this series. The results also suggested that the N-substituent (R2) on the pyrrolidin-3-yl group performs an important role in expressing affinity for D2, D3, and D4 receptors and selectivity among the respective subtypes. One of the compounds, (S)-(+)-N-(1-benzyl-3-pyrrolidinyl)-5-chloro-4-[(cyclopropylcarbonyl+ ++) amino]-2-methoxybenzamide (5c) (YM-43611), showed high affinity for D3 and D4 receptors (Ki values of 21 and 2.1 nM, respectively) with 110-fold D4 selectivity and 10-fold D3 preference over D2 receptors and weak or negligible affinity for representative neurotransmitter receptors. Compound 5c displayed potent antipsychotic activity in inhibiting apomorphine-induced climbing behavior in mice (ED50 value, 0.32 mg/kg sc).  相似文献   

10.
Leukotriene biosynthesis inhibitors have potential as new therapies for asthma and inflammatory diseases. The recently disclosed thiopyrano[2,3,4-cd]indole class of 5-lipoxygenase (5-LO) inhibitors has been investigated with particular emphasis on the side chain bearing the acidic functionality. The SAR studies have shown that the inclusion of a heteroatom (O or S) in conjunction with an alpha-ethyl substituted acid leads to inhibitors of improved potency. The most potent inhibitor prepared contains a 2-ethoxybutanoic acid side chain. This compound, 14d (2-[2-[1-(4-chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methox y]- 4,5-dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]-butanoic acid, L-699,333), inhibits 5-HPETE production by human 5-LO and LTB4 biosynthesis by human PMN leukocytes and human whole blood (IC50s of 22 nM, 7 nM and 3.8 microM, respectively). The racemic acid 14d has been shown to be functionally active in a rat pleurisy model (inhibition of LTB4, ED50 = 0.65 mg/kg, 6 h pretreatment) and in the hyperreactive rat model of antigen-induced dyspnea (50% inhibition at 2 and 4 h pretreatment; 0.5 mg/kg po). In addition, 14d shows excellent functional activity against antigen-induced bronchoconstriction in the conscious squirrel monkey [89% inhibition of the increase in RL and 68% inhibition in the decrease in Cdyn (0.1 mg/kg, n = 3)] and in the conscious sheep models of asthma (iv infusion at 2.5 micrograms/kg/min). Acid 14d is highly selective as an inhibitor of 5-LO activity when compared to the inhibition of human 15-LO, porcine 12-LO and ram seminal vesicle cyclooxygenase (IC50 > 5 microM) or competition in a FLAP binding assay (IC50 > 10 microM). Resolution of 14d affords 14g, the most potent diastereomer, which inhibits the 5-HPETE production of human 5-LO and LTB4 biosynthesis of human PMN leukocytes and human whole blood with IC50s of 8 nM, 4 nM, and 1 microM respectively. The in vitro and in vivo profile of 14d is comparable to that of MK-0591, which has showed biochemical efficacy in inhibiting ex vivo LTB4 biosynthesis and urinary LTE4 excretion in clinical trials.  相似文献   

11.
The design, synthesis, and biological evaluation of compounds related to the dopamine (DA) uptake inhibitors: 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (1) and 1-[2-[bis-(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (2) (GBR 12395 and GBR 12909, respectively), directed toward the development and identification of new ligands interacting with high potency and selectivity at the dopamine transporter (DAT) is reported. The substitution of the piperazine ring in the GBR structure with other diamine moieties resulted in the retention of the high affinity of new ligands for the DAT. Some of the modified GBR analogs (e.g. 8, 10, (-)-49, or (-)-50) displayed substantially higher selectivity (4736- to 693-fold) for the dopamine (DA) versus the serotonin (5HT) reuptake site than the parent compounds. The bis(p-fluoro) substitution in the (diphenylmethoxy)ethyl fragment slightly increased the affinity of the ligands at the DA reuptake site but reduced their selectivity at this site (e.g. 9 and 8, 11 and 10, or 17 and 16, respectively). Congeners, such as the series of monosubstituted and symmetrically disubstituted piperazines and trans-2,5-dimethylpiperazines, which lack the (diphenylmethoxy)ethyl substituent lost the affinity for the DAT yet exhibited very high potency for binding to the sigma receptors (e.g.28). The chiral pyrrolidine derivatives of 1, (-)-49, and (+)-49, exhibited an enantioselectivity ratio of 181 and 146 for the inhibition of DA reuptake and binding to the DAT, respectively.  相似文献   

12.
The present study was designed to compare the effects of typical and atypical antipsychotic drugs on extracellular dopamine (DA) levels in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAC), using in vivo microdialysis with dual probe implantation in awake, freely moving rats. Amperozide (2 and 10 mg/kg), clozapine (5 and 20 mg/kg), and olanzapine (10 mg/kg), all of which are atypical antipsychotics, produced greater increases in extracellular DA levels in the mPFC than in the NAC. Olanzapine (1 mg/kg), risperidone (0.1 and 1 mg/kg), also an atypical antipsychotic, and S-(-)-sulpiride (25 mg/kg), a typical antipsychotic, produced comparable increases in extracellular DA levels in the mPFC and the NAC. S-(-)-sulpiride (10 mg/kg) and haloperidol (0.1 and 1 mg/kg), another typical antipsychotic, significantly increased extracellular DA levels in the NAC but not in the mPFC. The effects of the six antipsychotic drugs to increase extracellular DA levels in the mPFC relative to those in the NAC was positively correlated with the difference between their pKi values for serotonin (5-hydroxytryptamine, 5-HT2A) and DA-D2 receptors and was inversely correlated to their pKi values for D2 or D3 receptors, but was not for 5-HT2A receptors alone. These results are consistent with the hypothesis that the ability of antipsychotic drugs to produce a greater increase in prefrontal compared with NAC extracellular DA levels may be related, in part, to weak D2 and D3 receptor affinity relative to 5-HT2A receptor antagonism.  相似文献   

13.
(1S,2S)-1-(4-Hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol (CP-101,606, 1) is a recently described antagonist of N-methyl-D-aspartate (NMDA) receptors containing the NR2B subunit. In the present study, the optimal orientation of compounds of this structural type for their receptor was explored. Tethering of the pendent methyl group of 1 to the phenolic aromatic ring via an oxygen atom prevents rotation about the central portion of the molecule. Several of the new chromanol compounds have high affinity for the racemic [3H]CP-101,606 binding site on the NMDA receptor and protect against glutamate toxicity in cultured hippocampal neurons. The new ring caused a change in the stereochemical preference of the receptor-cis (erythro) compounds had better affinity for the receptor than the trans isomers. Computational studies suggest that steric interactions between the pendent methyl group and the phenol ring in the acyclic series determine which structures can best fit the receptor. The chromanol analogue, (3R,4S)-3-[4-(4-fluorophenyl)-4-hydroxypiperidin-1- yl]chroman-4,7-diol (12a, CP-283,097), was found to possess potency and selectivity comparable to CP-101,606. Thus 12a is a new tool to explore the function of the NR2B-containing NMDA receptors.  相似文献   

14.
152255 (E-1,1'-(2-butene-1,4-diyl)bis[2-[4-[3-(1-piperidinyl)propoxy]-phe nyl]-1H-benzimidazole]) exhibited high affinity (Ki = 12.7 nM) for human dopamine (DA) D3 receptors expressed in CHO K1 cells but not for DA D2L receptors (Ki = 565 nM), DA D42 or DA D1 receptors (Ki > 3 microM) and a number of other neurotransmitter receptors. Affinity for human muscarinic receptors was seen in vitro but no functional muscarinic agonist and/or antagonist action was observed in vivo. Antagonist activity at DA D3 receptors was demonstrated by blockade of quinpirole-stimulated [3H]-thymidine uptake in D3 transfected cells, an effect that was 28-fold more potent than in D2-transfected cells. Unlike classical DA D2 antagonists, PD 152255 did not increase rat brain DA synthesis and it increased locomotion in habituated rats. However, like antipsychotics, PD 152255 reduced locomotor activity in mice and reduced spontaneous and amphetamine-stimulated locomotion in nonhabituated rats. These results demonstrate that PD 152255 is a DA D3 antagonist that may have antipsychotic activity.  相似文献   

15.
5-HT1 receptors are members of the G-protein-coupled receptor superfamily and are negatively linked to adenylyl cyclase activity. The human 5-HT1B and 5-HT1D receptors (previously known as 5-HT1Dbeta and 5-HT1Dalpha, respectively), although encoded by two distinct genes, are structurally very similar. Pharmacologically, these two receptors have been differentiated using nonselective chemical tools such as ketanserin and ritanserin, but the absence of truly selective agents has meant that the precise function of the 5-HT1B and 5-HT1D receptors has not been defined. In this paper we describe how, using computational chemistry models as a guide, the nonselective 5-HT1B/5-HT1D receptor antagonist 4 was structurally modified to produce the selective 5-HT1B receptor inverse agonist 5, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2, 4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6, 7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperidine] (SB-224289). This compound is a potent antagonist of terminal 5-HT autoreceptor function both in vitro and in vivo.  相似文献   

16.
Several 3, 3-dimethyl-N-[omega-(tetrahydronaphthalen-1-yl)alkyl]piperidine derivatives and some related compounds were prepared. Their affinities and sigma-subtype selectivities were investigated by radioligand binding assays, labeling sigma1 receptors with [3H]-SKF 10047 and sigma2 receptors with [3H]-DTG. Many tested compounds bound sigma1 and/or sigma2 receptors with nanomolar or subnanomolar IC50 values. Compound (+)-22, (+)-3,3-dimethyl-1-[3-(5-methoxy-1,2,3, 4-tetrahydronaphthalen-1-yl)-n-propyl]piperidine, was the most potent (IC50 = 0.089 nM) and selective sigma1 ligand (1340-fold), showing a 10-fold enantioselectivity. Compounds 29 (3, 3-dimethyl-1-[4-(6-methoxy-1,2,3, 4-tetrahydronaphthalen-1-yl)-n-butyl]piperidine) and 31 (3, 3-dimethyl-1-[5-(1,2,3, 4-tetrahydronaphthalen-1-yl)-n-pentyl]piperidine) were highly potent (IC50 = 0.016 nM and IC50 = 0.008 nM, respectively) and highly selective sigma2 ligands (more than 100000-fold).  相似文献   

17.
A new series of heteroaromatic GBR 12935 [1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)-piperazine] (I) and GBR 12909 [1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine] (2) analogs was synthesized and evaluated as dopamine transporter (DAT) ligands. Analogs 5-16, in which the benzene ring in the phenylpropyl side chain of the GBR molecule had been replaced with a thiophene, furan, or pyridine ring, exhibited high affinity and selectivity for the DAT vs serotonin transporter (SERT) and stimulated locomotor activity in rats in a manner similar to the parent compound 2. In cocaine and food self-administration studies in rhesus monkeys, both thiophene-containing (6 and 8) and pyridine-containing (14 and 16) derivatives displayed potency comparable to 2 in decreasing the cocaine-maintained responding at the doses tested (0.8, 1.7, and 3 mg/kg). However, these compounds did not produce the degree of separation between food- and cocaine-maintained responding that was seen with 2. Among the bicyclic fused-ring congeners 17-38, the indole-containing analog of 2, 22, showed the greatest affinity for binding to the DAT, with IC50 = 0.7 nM, whereas the corresponding indole-containing derivative of 1, 21, displayed the highest selectivity (over 600-fold) at this site vs the SERT site.  相似文献   

18.
Eighteen N-(2-Pyridyl)-2-[2(3H)-benzazolone-3-yl]acetamide derivatives have been synthesized. The chemical structure of the compounds have been elucidated by elemental analysis, IR and 1H NMR spectral data and their antinociceptive and anti-inflammatory activities were tested in mice. Compound VII o has shown the highest antinociceptive activity, and VII g, j, k, r exhibited relatively high antinociceptive activity. In addition, compounds VII d, f, j, p showed statistically significant anti-inflammatory activity.  相似文献   

19.
S 16924 antagonized locomotion provoked by dizocilpine and cocaine, reduced conditioned avoidance responses and blocked climbing elicited by apomorphine, models predictive of control of the positive symptoms of schizophrenia: its median inhibitory dose (ID)50 was 0.96 mg/kg, s.c. vs. 1.91 for clozapine and 0.05 for haloperidol. Rotation elicited in unilateral, substantia nigra-lesioned rats by the D1 agonist, SKF 38393, and by the D2 agonist, quinpirole, was blocked equipotently by S 16924 (0.8 and 1. 7) and clozapine (0.6 and 2.0), whereas haloperidol preferentially blocked quinpirole (0.02) vs. SKF 38393 (1.8). S 16924 more potently inhibited the head-twitches elicited by 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and the locomotion provoked by phencyclidine than it inhibited the locomotion elicited by amphetamine (ID50s = 0.15 and 0.02 vs. 2.4). Clozapine showed a similar preference (0.04 and 0.07 vs. 8.6), but not haloperidol (0. 07 and 0.08 vs. 0.04). The discriminative stimulus (DS) properties of DOI were also blocked by S 16924 (ID50 = 0.17) and clozapine (0. 05) but not by haloperidol (>0.16). S 16924 fully (100%) generalized [effective dose (ED)50 = 0.7] to a clozapine DS and clozapine (0.23) fully generalized to a S 16924 DS whereas haloperidol (>/=0.08) only partially generalized (/=80.0) or clozapine (>/=80.0). Further, S 16924 (ID50 = 3.2) and clozapine (5.5) inhibited induction of catalepsy by haloperidol. This action of S 16924 was abolished by the 5-HT1A receptor antagonist, WAY 100,635 (0.16), which less markedly attenuated the anticataleptic action of clozapine. Further, although gnawing elicited by methylphenidate was inhibited by S 16924 (ID50 = 8.4), clozapine (19.6) and haloperidol (0.04), only the action of S 16924 was blocked by WAY 100,635 (0.16). Haloperidol potently (0.01-0.16, approximately 24-fold) increased prolactin levels whereas they were less markedly affected by S 16924 (2.5-40.0, 4-fold) and clozapine (10.0-40.0, 3-fold). Clozapine displayed high affinity at cloned, human, muscarinic (M1) and native, histamine (H1) receptors (Kis = 4.6 and 5.4 nM, respectively), whereas S 16924 (>1000 and 158) and haloperidol (>1000 and 453) displayed low affinity. In conclusion, S 16924 displays a profile of activity in diverse models of potential antipsychotic and extrapyramidal properties similar to that of clozapine and different to that of haloperidol. In particular, reflecting its partial agonist actions at 5-HT1A receptors, S 16924 inhibits rather than induces catalepsy in rats. However, in contrast to clozapine, S 16924 displays only low affinity for muscarinic and histaminic receptors.  相似文献   

20.
This paper describes a novel series of nonpeptide vasopressin V2 receptor antagonists. It has been demonstrated that the 1-[4-(benzoylamino)benzoyl]-2,3,4,5-1H-benzazepines and 1-[4-(benzoylamino)benzoyl]-2,3,4,5-1H-1,5-benzodiazepines show a high affinity for V2 (and V1a) receptors. Among the 1-[4-(benzoylamino)benzoyl]-2,3,4,5-1H-benzazepine series, compounds with an alkylamino group on the benzazepine ring have been shown to have oral activity. A lipophilic group at the ortho position on the terminal benzoyl ring is important for both high V2 receptor affinity and oral activity. On the basis of these favorable properties, clinical testing of 31b has begun for use as an oral and iv aquaretic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号