首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为降低固体火箭推进剂燃烧生成物中氯化氢(NCI)的含量,推进以硝酸铵(AN)作氧化剂,以缩水甘油叠氮聚醚(GAP)作粘合剂的推进剂早日达到实用水平,进行了改进燃达特性的研究。证明添加少量高氯酸铵(AP)可以增加燃速。AP与AN的质量比为AP/AN=1.0时,在4MPa以上压力下,AP的扩散火焰决定燃4,压力指数在0.37以下。在GAP/AN/AP推进剂中添加氧化铁时,燃速及5MPa以下的压力指数增大.在高压方面压力指数下降。证明氧化铁有促进AP热分解的作用。  相似文献   

2.
高氯酸铵(AP)系复合推进剂具有在不含氧化铁时随粘合剂种类的不同在低温下出现不稳定燃烧,添加氧化铁时即便在低温下也可稳定燃烧的燃速温度感度特性。如AP/AMMO和AP/PPG在燃烧表面形成熔解层的推进剂燃速的温度感度特性很高,添加氧化铁时温度感度有下降的趋势。不含氧化铁时燃速的温度感度随压力的上升而增加,而添加氧化铁的推进剂对压力的依赖性变小。分析气相反应与凝缩相反应的温度感度特性的结果证明,AP系复合推进剂不论有无氧化铁,在低温领域燃烧表面附近的凝缩相反应决定速率。但是粘合剂成分对燃烧表面附近气相反应的温度感度影响也很大,而且对燃速的温度感度也有影响。  相似文献   

3.
本文研究了高压下氧化铁催化剂对推进剂催化作用的位置和机理,催化剂如何提高推进剂燃烧速度和产生平台燃烧特性,利用等温热重分析法(TGA)、差示扫描量热法(DSC)和快速扫描FTIR分光光度法等技术研究了推进剂凝聚相区化学过程。在相对较低压力区内未催化的含高氯酸铵(AP)叠氮类复合推进剂表现出不稳定燃烧,在此压力范围内燃烧表面的热平衡也不稳定,因此氧化铁改变了推进剂的燃烧特性并提高了燃烧速度,伴随着平台-麦撒燃烧特性。燃烧速度对压力的不敏感性表明,在催化作用机理上分析,推进剂凝聚相化学在AP粒子的外表面,阻止了更多的AP的分解,但并没有影响推进剂的平台燃烧。Fe2O3对推进剂燃速提高的影响比Fe3O4的大。研究中所用的推进剂使用Fe3O4时,它的催化作用对降低压力指数更为有利。  相似文献   

4.
火箭用的固体推进剂要求具有比冲高和燃速范围宽的特性。为取得高比冲, 研究了以GAP(缩水甘油叠氮聚醚)作燃料成分的复合推进剂理论燃烧性能与燃速。作为氧化剂探讨了高氯酸铵(AP)、硝酸铵(AN)和奥克托金(HMX)。GAP为生成热49.37kJ/m ol的高能物质, 而且有自燃性, 作为可以高速燃烧的燃料成分兼有很好的粘合剂特性。虽然GAP的压力指数与温度感度高, 但添加AN或HMX可以显著降低温度感度。而且GAP系复合推进剂的燃速在用AP、HMX或TAGN作氧化剂时受粒度的控制, 在用AN 作氧化剂时其燃速与粒度无关。利用粒状扩散火焰模型进行的探讨明确了上述特性。  相似文献   

5.
高能复合推进剂的燃烧机理——高能粘合剂的效果   总被引:1,自引:0,他引:1  
研究证明,AP系复合推进剂的粘合剂中能量越高燃速也越高。在本试验压力范围内供试验用的推进剂出现燃烧中断,当粘合剂中AMMO含量为80%以上时,在4MPa压力下燃烧中断,并有推进剂的绝热火焰温度越高燃速越高的趋势。推进剂的燃烧热显示,在粘合剂中AM-MO含量在80%以下时,AMMO含量越多燃烧热越高,而燃烧热越高绝热火焰温度也越高。推进剂的燃烧热越高燃速也越高。已知叠氮化聚合物单体燃速的速率决定阶段是凝缩相反应,本研究证明,在AP系复合推进剂中从气相到燃烧表面的热流束影响推进剂燃速的速率决定阶段。  相似文献   

6.
硝铵/铝系复合推进剂的燃烧机理   总被引:1,自引:0,他引:1  
研究了在硝酸铵(AN)系复合推进剂中添加高氯酸铵(AP)和铝时的燃烧特性.在AN系复合推进剂中添加AP时燃速增加,压力指数几乎不变.热分析结果显示,AN颗粒与AP颗粒分别独立分解.燃烧波的温度分布测量结果证明,由于添加AP,燃烧表面附近的气相温度梯度增大,从气相向燃烧表面的热流量增加.由于热流量的增加引起燃速增加.铝的燃烧效率随AP添加量的增加而增加,当AP添加量达40%(wt)时燃烧效率急增.  相似文献   

7.
已知高氯酸铵(AP)系复合推进剂的燃速特性受所用粘合剂的种类影响。对粘合剂聚酯多元醇(PO)、聚丙撑二醇(PPG)、3-叠氮甲基3-甲基氧丁烷(AMMO)、端羟基聚丁二烯(HTPB)和聚硫化物进行了探讨。添加氧化铁时不论使用那种粘合剂燃速都增加。氧化铁对粘合剂成分有影响,确认了不同粘合剂成分随压力范围不同其反应速率决定阶段发生变化。叠氮化聚合物高能粘合剂不论有无氧化铁在测量压力范围内表示出扩散决定速率。这是因为燃烧表面附近的放热反应促进AP与粘合剂分解气体间的化学反应  相似文献   

8.
硝酸铵/铝/高氯酸铵系复合推进剂的点火特性   总被引:1,自引:0,他引:1  
采用在端羟基聚丁二烯(HTPB)20%(质量比)中加入铝粉20%(质量比),再加入氧化剂AN(硝酸铵)/AP(高氯酸铵)合计60%(质量比)的推进剂,取得了在AN中加入AP时的燃速特性和点火特性。在燃烧压力为1MPa时,AN系复合推进剂的燃速为1.2mm/s,AP系复合推进剂的燃速为4.0mm/s。在压力1MPa、照射能量600W的条件下,AN系复合推进剂的点火滞后时间约为460ms,AP系复合推进剂的点火滞后时间仅为7.5ms。AN系复合推进剂点火滞后时间长的主要原因是化学点火滞后时间长。在AN系复合推进剂中混入AP时,燃速同样增加,点火滞后时间随着燃速的增加而减少。  相似文献   

9.
研究了GAP/AN系复合推进剂的冲击特性与热特性。明确了利用添加固化剂的比例和硝酸酯、二辛基己二酸酯可以改善推进剂的物理性能,以及速率决定过程不受物理性能支配。NC可明显降低临界冲击波压力,而14.8%HMX与AP大体没有影响。由于NC分解温度低,分解生成物的反应性高,可以降低热冲击性,所以GAP/TMETN/AN推进剂显示出良好的热冲击性。有效利用硝酸酯类不仅可以提高GAP/AN推进剂的燃烧性能,而且可以改善感度特性  相似文献   

10.
包覆高氯酸铵及其燃烧特性研究   总被引:7,自引:0,他引:7  
杨荣杰  刘云飞 《兵工学报》1999,20(4):306-309
对高氯酸铵(AP)颗粒表面进行包覆,采用溶解试验、DSC等对包覆AP的性质进行了分析。对AP单元推进剂进行了燃烧性能测定,分析了包覆降低AP燃烧速度和压力指数的机理。将包覆后的AP应用于AP/HTPB复合固体推进剂中,降低了推进剂的高压燃烧速度和压力指数。  相似文献   

11.
研究和论述了AN/GAP类推进剂的一些主要特性,如化学稳定性、燃烧特性和起爆敏感性等。利用四种不同种类的纯的和相稳定的AN,使其与GAP和硝酸酯为增塑剂制成推进剂,对它们的稳定性和燃烧特性等方面的特性进行了比较,从中发现在推进剂的燃烧特性和稳定性方面AN/GAP推进剂表现出令人满意结果,使纯的AN在熔化的新型的氧化钼/氧化钒催化剂表面上分裂为原子,使其燃烧性能比冲得到改进。  相似文献   

12.
PNTO在GAP推进剂燃烧中的催化特性   总被引:9,自引:2,他引:7  
利用现代燃烧诊断技术对PNTO-GAP推进剂中的PNTO的推进特性进行了探讨,认为PN-TO的催化机与普通铅盐明显不同。PNTO是燃烧反应中心,它加速了GAP推进剂的燃烧,其作用部位在凝聚相。单独使用PNTO可使RDX/GAP/NG推进剂的燃速压力指数降低至0.5左右。  相似文献   

13.
液体二茂铁衍生物系高燃速催化剂,具有良好的催化效果和热稳定性。以2,2-双乙基二茂铁丙烷(BEFP)与利用气流粉碎机制造的极细高氯铵(VFAP)为基础试制了高燃速高能推进剂。采用这种VFAP的推进剂,在燃烧压力为5MPa时燃速可达20mm/s,但压力指数升高。而采用VFAP与BEFP组合时,燃速可提高到40mm/s以上,且压力指数可降低到实用值。分析了VEAP的结晶及热分解特性,与平均粒度为0.1μm的超细铝粉(UFAl)和银丝组合,试制出可以直接浇注的燃速为150mm/s以上的高燃速高能推进剂。  相似文献   

14.
AP-CMDB推进剂稳态燃烧性能计算研究   总被引:1,自引:0,他引:1  
张炜  朱慧 《兵工学报》1997,19(1):9-12
建立了一个AP-CMDB推进剂稳态燃烧模型。该模型可用于AP-CMDB推进剂和经典双基推进剂燃速特性的模拟计算,其计算结果与文献值相符合,说明该模型是合理、可行的。AP-CMDB推进剂计算结果表明,AP粒径减小,AP含量增加,推进剂燃速升高;而含能粘结剂-DB母体的含能程度越高,即NG含量增加,或NG的硝化度加大,都有利于提高推进剂的燃速。  相似文献   

15.
介绍了国外对含细颗粒多孔高氯酸胺(FPAP)推进剂燃烧性能的研究,并同含细颗粒高氯酸胺(FAP)的推进剂作了比较,结果表明FPAP推进剂的燃速高于FAP推进剂,且FPAP推进剂的燃速随着FPAP含量的增加而升高。最后,用多火焰燃烧理论分析探讨了FPAP推进剂燃速升高的原因所在,这对深入开展推进剂燃烧性能的研究起着十分重要的作用。  相似文献   

16.
利用二氧化碳(CO2)激光器研究了含高氯酸铵(AP)20%~30%的GAP/AN/AP系低公害推进剂在低压时的点火特性。推进剂AN-40及含马格纳利厄姆镁铝合金的Mg·Al-5在39.9~53.2KPa以上的低压空气中可以自动点火,而在惰性保护气体中不能自动点火。证明自动点火与保护气体中的氧气有关。进一步降低保护气体压力时,两种推进剂都出现了不稳定的振动现象。Mg·Al-5推进剂比AN-40更易产生振动现象。在低热流方面,加入镁铝合金的推进剂点火时的表面温度比AN-40推进剂的约低20℃,因而点火滞后时间长,吸收能量多,表面附近固相内热层增厚,比AN-40推进剂有更好的自动点火性能。用差热分析研究热分解证明,推进剂组份中相对AN添加镁铝合金0.1具有与相对AN增加AP0.25同样的热分解效果。这可能是因为在高热流方面AN-40与Mg·Al-5推进剂的点火特性大体相同  相似文献   

17.
研究了加入HMX或AN/HMX的BAMO推进剂的热分解和燃烧特性。叠氮粘合剂起始分解产生的热加速了推进剂中HMX和AN的热分解,高氯酸铵(AP)和含有炭黑的硬酯酸铅显著改变了含NMX基的BAMO推进剂的热分解和燃烧特性。AP可以提高燃速并略微降低燃速压力指数。铅催化剂使推进剂产生高的燃速值和最低的压力指数。重铬酸铵也影响了含AN/HMX的推进剂样品的热分解和燃烧性能的机理。重铬酸铵和铬醚铜的化合物对含AN/HMX推进剂燃速增加很有效。推进剂中AN从冷凝相升华和蒸发,在气相以放热反应为主。含HMX和AN/HMX的BAMO推进剂在小型发动机测试中显示出无烟的燃烧特性。  相似文献   

18.
提出了GAP的一个燃烧模型。从模型样品的线性燃烧速度和测量的压力值我们可以得出如下结论:在压力指数分界点(2.3MPa)以下时线性燃速由N2释放过程所控制。此外,对通过快速降压产生的熄火样品进行扫描电镜照片和付立叶红外光谱分析表明,N2释放过程很强地限制了燃烧表面的熔融层和热释放的速度值,而且表现出δ-函数,这个事实能够应用在对该现象的渐近分析中。  相似文献   

19.
研究了氟烃/硼/AP推进剂的热分解和燃烧性能,氟碳粘结剂(FBDR)被AP的分解产物氧化,在缓慢热分解时它的分解温度范围低于150℃。硼粒子在550℃下既不与FBDR反应,也不与AP反应。在小型发动机试验中,硼粒子甚至在低的特征排气速度下也能在30~80MPa压力下和短时间内(1ms)完全燃烧。需要最小的自内容积以完成在燃烧室中的燃烧反应。在小于110cm的特征燃烧室长度的情况下,特征排气速度显著减小。该类硼化推进剂在-30~60℃之间表现出低的温度感度。  相似文献   

20.
探讨了不同粘合剂成分对高氯酸铵(AP)系复合推进剂热分解特性的影响。实验结果证明,AP系复合推进剂的热分解特性取决于粘合剂成分本身的热分解特性,而压力对热分解的影响较小。添加氧化铁可以促进AP的热分解和粘合剂的热分解,从而可以促进推进剂的热分解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号