首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
Liao YC  Sun H  Weeks BL 《Scanning》2012,34(3):200-205
Thermal stability of self-assembled monolayers (SAMs) is important for applications in various surface science applications. As a model material, 16-mercaptohexadecanoic acid (MHA) on template stripped gold surfaces was investigated to determine the effect of temperature on the change of lateral force signal using atomic force microscopy (AFM). Friction force signals were obtained at various temperatures in order to determine whether it was possible to correlate the friction signal with desorption of the thiol molecule from the surface. Samples were heated for up to 10 h ranging from 40 to 80 °C in air and scanned every hour. A kinetic model was introduced to correlate the lateral force signal to the activation energy of desorption of the SAM from gold surface with heating. The activation energy of the detachment using this technique is 25.4 kcal/mol, which is consistent with other more complex techniques.  相似文献   

3.
4.
Tiryaki VM  Khan AA  Ayres VM 《Scanning》2012,34(5):316-324
Summary: A diagnostic approach is developed and implemented that provides clear feature definition in atomic force microscopy (AFM) images of neural cells on nanofibrillar tissue scaffolds. Because the cellular edges and processes are on the same order as the background nanofibers, this imaging situation presents a feature definition problem. The diagnostic approach is based on analysis of discrete Fourier transforms of standard AFM section measurements. The diagnostic conclusion that the combination of dynamic range enhancement with low‐frequency component suppression enhances feature definition is shown to be correct and to lead to clear‐featured images that could change previously held assumptions about the cell–cell interactions present. Clear feature definition of cells on scaffolds extends the usefulness of AFM imaging for use in regenerative medicine. SCANNING 34: 316–324, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
Feng SC  Vorburger TV  Joung CB  Dixson RG  Fu J  Ma L 《Scanning》2008,30(1):47-55
It is difficult to predict the measurement bias arising from the compliance of the atomic force microscope (AFM) probe. The issue becomes particularly important in this situation where nanometer uncertainties are sought for measurements with dimensional probes composed of flexible carbon nanotubes mounted on AFM cantilevers. We have developed a finite element model for simulating the mechanical behavior of AFM cantilevers with carbon nanotubes attached. Spring constants of both the nanotube and cantilever in two directions are calculated using the finite element method with known Young's moduli of both silicon and multiwall nanotube as input data. Compliance of the nanotube-attached AFM probe tip may be calculated from the set of spring constants. This paper presents static models that together provide a basis to estimate uncertainties in linewidth measurement using nanotubes. In particular, the interaction between a multiwall nanotube tip and a silicon sample is modeled using the Lennard-Jones theory. Snap-in and snap-out of the probe tip in a scanning mode are calculated by integrating the compliance of the probe and the sample-tip interacting force model. Cantilever and probe tip deflections and points of contact are derived for both horizontal scanning of a plateau and vertically scanning of a wall. The finite element method and the Lennard-Jones model provide a means to analyze the interaction of the probe and sample and measurement uncertainty, including actual deflection and the gap between the probe tip and the measured sample surface.  相似文献   

7.
The poor integration with host cornea tissue and the low mechanical properties of pHEMA hydrogel for artificial cornea remains a difficult problem to solve. A modified pHEMA hydrogel, MMA copolymerized and type‐I collagen and bFGF immobilized, was previously prepared in an attempt to solve the problems. In this study, the cytotoxicity of Col/bFGF‐p (HEMA‐MMA) and p (HEMA‐MMA) was studied by cell adhesion assay and atomic force microscopy (AFM). The results of cell adhesion assay show that the attachment of keratocytes on the modified membrane is much higher than that of the unmodified membrane. This indicates that the material after modification have better cell–material interaction. The AFM images reveal that the morphology of keratocytes cultured on different substrate is obviously different. The cell cultured on modified membrane presented a completely elongated and spindle‐shape morphology. The force?distance indicates that the biomechanical of keratocytes changes significantly after culturing on different substrates. The adhesion force (2328±523 pN) and Young's modulus (0.51±0.125 kPa) of the cell cultured on modified membrane are much higher, and the stiffness (0.08±0.022 mN/m) is lower than those of the cell cultured on unmodified membrane. These results show that the cytotoxicity of Col/bFGF‐p (HEMA‐MMA) for keratocytes is much improved. SCANNING 31: 246–252, 2009. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
针对目前高速扫描型原子力显微镜(AFM)主要是限于物检测且扫描速度和扫描范围均有待提高,提出了一种高速原子力显微镜结构设计方案。在压电陶瓷致动器驱动的柔性铰链结构式位移台的基础上,构建了AFM大范围扫描器,使原子力显微镜在x-y扫描方向的运动范围达到了100μm×100μm。通过傅里叶频谱分析,计算获得了AFM扫描器常用的三角波驱动信号和正弦波驱动信号的高次谐波特性及其对AFM高速扫描成像的影响程度。为了消除在扫描运动过程中的机械自激振荡,提出了将正弦波信号作为高速扫描的驱动信号,行扫速度达到50line/s。在正弦波驱动的基础上提出了一种基于位置采样的图像获取方法,有效地减小了AFM扫描器的非线性误差造成的图像畸变现象。  相似文献   

9.
This paper highlights the potential of atomic force microscopy in the pulsed force mode to investigate the photopatterning of acrylic‐based films. The pulsed force mode is a nonresonant mode designed to allow approach curves to be recorded along the scanning path. It thereby provides the topography of the sample and a direct and simple local characterization of adhesion and stiffness. This mode can be used either for imaging or for locally probing the mechanical properties of a surface. In particular, a correlation between stiffness and conversion of the monomer was established. The close examination of the pulsed force mode signal brought accurate information on the photoinduced modification of the film. Polymer films with submicron photopatterning generated by interferometric illumination were analyzed by pulsed force mode. It was established that the gradient of mechanical properties throughout the films was strongly dependant on the irradiation conditions.  相似文献   

10.
We have employed field-emission secondary electron microscopy (FESEM) for morphological evaluation of freeze-fractured frozen-hydrated renal epithelial LLC-PK1 cells prepared with our simple cryogenic sandwich-fracture method that does not require any high-vacuum freeze-fracture instrumentation (Chandra et al. (1986) J. Microsc. 144 , 15–37). The cells fractured on the substrate side of the sandwich were matched one-to-one with their corresponding complementary fractured faces on the other side of the sandwich. The FESEM analysis of the frozen-hydrated cells revealed three types of fracture: (i) apical membrane fracture that produces groups of cells together on the substrate fractured at the ectoplasmic face of the plasma membrane; (ii) basal membrane fracture that produces basal plasma membrane-halves on the substrate; and (iii) cross-fracture that passes randomly through the cells. The ectoplasmic face (E-face) and protoplasmic face (P-face) of the membrane were recognized based on the density of intramembranous particles. Feasibility of fractured cells was shown for intracellular ion localization with ion microscopy, and fluorescence imaging with laser scanning confocal microscopy. Ion microscopy imaging of freeze-dried cells fractured at the apical membrane revealed well-preserved intracellular ionic composition of even the most diffusible ions (total concentrations of K+, Na+ and Ca+). Structurally damaged cells revealed lower K+ and higher Na+ and Ca+ contents than in well-preserved cells. Frozen-freeze-dried cells also allowed imaging of fluorescently labelled mitochondria with a laser scanning confocal microscope. Since these cells are prepared without washing away the nutrient medium or using any chemical pretreatment to affect their native chemical and structural makeup, the characterization of fracture faces introduces ideal sample types for chemical and morphological studies with ion and electron microscopes and other techniques such as laser scanning confocal microscopy, atomic force microscopy and near-field scanning optical microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号