首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Food chemistry》2003,82(3):361-366
The protein content, solubility and functional properties of a total protein isolate prepared from sesame seeds (Kenana 1 cultivar) as a function of pH and/or NaCl concentration were investigated. The protein content of the seed was found to be 47.70%. The minimum protein solubility was at pH 5 and the maximum was at pH 3. The emulsifying capacity, activity and emulsion stability as well as foaming capacity and foam stability were greatly affected by pH levels and salt concentrations. Lower values were observed at acidic pH and high salt concentration. The protein isolate was highly viscous and dispersable at pH 9 with water holding capacity of 2.10 ml H2O/g protein, oil holding capacity of 1.50 ml oil/g protein and bulk density of 0.71 gm/ml.  相似文献   

2.
The content, fractionation, solubility and functional properties of wheat bran proteins as well as the effects of pH and/or NaCl concentration on some of these functional properties were investigated. The protein content of the bran was found to be 16.80%. Albumin and glutelin are the major fractions of wheat bran proteins. The minimal protein solubility was observed at pH 5.5, the maximum at pH 11.5. The emulsifying capacity, activity and emulsion stability as well as foaming capacity and foam stability were greatly affected by pH and salt concentrations. Lower values were observed at acidic pH and high salt concentration. The least gelation concentration of wheat bran proteins was found to be 16% when the proteins were dissolved in 1.0 M NaCl. The total protein was highly viscous and dispersable with water-holding capacity of 4.20 mL H2O/g protein, oil-holding capacity of 1.70 mL oil/g protein and bulk density of 0.29 g/mL while dispensability was found to be 77.30%.  相似文献   

3.
The nonhydrolyzable carbon (NHC) and black carbon (BC) in three contaminated soils and seven sediments from the Pearl River Delta and Estuary, China, were isolated upon treatments with an acid hydrolysis method and with a combustion method at 375 degrees C, respectively, and their sorption isotherms for phenanthrene (Phen) were established. It was found that NHC is chemically and structurally different from the biopolymer and humic substances and consists mainly of aliphatic and aromatic carbon using elemental analysis, 13C nuclear magnetic resonance spectroscopy (13C NMR), and Fourier transformed infrared spectroscopy (FTIR). All the sorption isotherms are nonlinear and are well fitted by the Freundlich model. The single-point organic carbon-normalized distribution coefficient (K(oc)) measured for the isolated NHC is 1.3-7.7 times higher than that for the bulk samples at the same aqueous concentration of Phen. The NHC fractions play a dominant role to the overall sorption in the bulk samples. The bulk soils and their NHC fractions have lower sorption capacity than the bulk sediments and their NHC fractions, relating to the different source of organic matter between soils and sediments. The Phen sorption capacity in the NHC samples is related significantlyto H/C ratios and aliphatic carbon, but negatively to aromatic carbon, demonstrating the important role of aliphatic carbon to the Phen sorption and the fate in the investigated soils and sediments.  相似文献   

4.
The presence of saccharides is being reported for aerosols taken in urban, rural, and marine locales. The commonly found primary saccharides are alpha- and beta-glucose, alpha- and beta-fructose, sucrose, and mycose with lesser amounts of other monosaccharides. Saccharide polyols are also found in some airsheds and consist mainly of sorbitol, xylitol, mannitol, erythritol, and glycerol. In temperate climate areas these compounds increase from negligible concentrations in winter aerosols (usually dominated by levoglucosan and related anhydrosaccharides from biomass burning) to a maximum in late spring-summer, followed by a decrease to winter. The composition of the saccharide mixtures suggests soil and associated microbiota as the source. Saccharide analyses of soils confirmed these compositions. Therefore, we propose resuspension of soil (also unpaved road dust) from agricultural activities as a major component of aerosol particles and the saccharides are the source specific tracers. In addition, the saccharides as well as the anhydrosaccharide derivatives from biomass burning are completely water soluble and thus contribute significantly to the total water-soluble mass of aerosols.  相似文献   

5.
Solid-solution speciation and phytoavailability of copper and zinc in soils   总被引:2,自引:0,他引:2  
The soil solution speciation and solid-phase fractionation of copper (Cu) and zinc (Zn) in 11 typical uncontaminated soils of South Australia were assessed in relation to heavy metal phytoavailability. The soils were analyzed for pH (4.9-8.4), soil organic matter content (3.5 to 23.8 g of C kg(-1)), total soil solution metal concentrations, Cu8 (49-358 microg kg(-1)) and Zn8 (121-582 microg kg(-1)), and dissolved organic matter (DOM) (69-827 mg of C L(-1)). The solid-liquid partition coefficient (Kd) ranged from between 13.9 and 152.4 L kg(-1) for Cu and 22.6 to 266.3 L kg(-1) for Zn. The phytoavailability of Cu and Zn could be predicted significantly using an empirical model with the solid-phase fractions of Cu and Zn, as obtained from selective sequential extraction scheme, as components. Phytoavailable Cu and Zn were found to significantly correlate with fulvic complex Cu (r= 0.944, P < 0.0001) and exchangeable Zn (r = 0.832, P = 0.002), respectively. The fulvic complex Cu was found to explain 89.2% of the variation in phytoavailable Cu, where as, the exchangeable Zn together with fulvic complex Zn could explain 78.9% of the variation in phytoavailable Zn. The data presented demonstrate the role of solid-phase metal fractions in understanding the heavy metal phytoavailability. The assessment of the role of solid-phase fractions in heavy metal phytoavailability is a neglected area of study and deserves close attention.  相似文献   

6.
Water chemistry and concentration of dissolved organic matter (DOM) have been reported to affect DOM conformation and binding properties with hydrophobic organic contaminants (HOCs). However, relationship between DOM conformation and its binding properties remains unclear. We designed a multibag equilibration system (MBES) to investigate the variation of carbon-normalized sorption coefficients (K(DOC)) of pyrene at different DOM concentrations based on an identical free solute concentration at different pHs and in the presence of Al ions. In addition, we studied the conformation of DOM under different conditions via atomic force microscopy (AFM) imaging, dynamic light scattering, and zeta potential measurements. Zeta potential measurements indicated that intra- and intermolecular interaction was facilitated at low pH or with the presence of Al ions, and a more organized molecular aggregate (such as a micelle-like structure) could form, thus, enhancing K(DOC). As DOM concentration increased, DOM molecular aggregation was promoted in a way reducing K(DOC). This research is a first attempt to correlate DOM conformation with K(DOC). Aggregation of DOM molecules resulting from increased zeta potential (less negative) generally led to an increased K(DOC). Further study in this area will provide valuable information on HOC-DOM interactions, thus, leading to more accurate predictions of K(DOC).  相似文献   

7.
The distribution of organic phosphorus in relation to soil organic matter and the influence of parent material and vegetation of organic P level was studied in a number of soil profiles in the northern half of Nigeria. There was a close relationship between soil organic carbon and organic phosphorus contents of these soils. The ratios of these two ingredients were all less than 200:1. This fact suggests that organic P is likely to be mineralised. The effect of parent rock on organic P contents was slight, but there was an indication that soil profiles on metamorphic parent rocks contained more organic phosphorus than those on sedimentary parent material. Vegetation had a great influence on organic P as shown by the relatively higher organic phosphorus contents of profiles from southern Guinea savanna and the lower contents of the Sudan vegetation zone. The profiles from impeded drainage sites (fadamas) were generally richer in organic phosphorus than were those from comparable vegetation zones on well drained sites.  相似文献   

8.
We report the solid-liquid partitioning of Cd, Cu, Ni, Pb, and Zn in 60 organic horizon samples of forest soils from the Hermine Watershed (St-Hippolyte, PQ, Canada). The mean Kd values are respectively 1132, 966, 802, 3337 and 561. Comparison of those Kd coefficients to published compilation values show that the Kd values are lower in acidic organic soil horizons relative to the overall mean Kd values compiled for mineral soils. But, once normalized to a mean pH of 4.4, the Kd values in organic soil horizons demonstrate the high sorption affinity of organic matter, which is either as good as or up to 30 times higher than mineral soil materials for sorbing trace metals. Regression analysis shows that, within our data set, pH and total metal contents are not consistent predictors of metal partitioning. Indeed, metal sorption by the solid phase must be studied in relation to complexation by dissolved organic ligands, and both processes may sometime counteract one another.  相似文献   

9.
The sorption of iodide was reduced when soil was dried before equilibration with an iodide solution. With undried soils, sorption continued for > 48 h, maximum sorption occurred at pH values < 5 but a secondary sorption peak occurred at pH 8.5 to 9.0, particularly with a soil containing a high level of organic matter. Temperature had only a small effect on sorption over the range 10 to 35 °C. Maximum values for the sorption of iodide by two surface soils (0 to 10cm) at pH 6.6 to 6.8, assessed with a soil: solution ratio of 1:10, an equilibrium time of 40 h and at room temperature, were 25 and 6 fig I/g soil, respectively. The amounts of iodide sorbed by these soils, and by soils taken from successive 10 cm layers to a depth of 40 cm at the same two sites, were closely related to the contents of organic matter in the soils but not to contents of iron or aluminium oxides or of clay. Treatment of the surface soils with hydrogen peroxide to destroy organic matter greatly reduced the sorption of iodide at the pH of about 5.5 that resulted from the treatment. The removal of iron and aluminium oxides with Tamm reagent also resulted in a marked reduction in sorption at pH < 5. The results indicate that sorption was due in part to soil organic matter and in part to iron and/or aluminium oxides. At pH > 6, organic matter appeared to be the major sorbing constituent but under more acid conditions the oxides appeared to be increasingly important.  相似文献   

10.
《Food chemistry》1998,61(3):345-350
The influence of immediate and delayed pH control, and added S-methyl-L-cysteine sulfoxide (MCSO) on the progress of pink discoloration in relation to the fate of thiosulfinates in extracts of yellow onion (Allium cepa) bulbs was evaluated over an incubation period of about 3 weeks at 21–24°C. Greatest discoloration occurred in extracts prepared with immediate pH control at 6.1, and least discoloration occurred at pH 3.2, over the pH range of 3.2–6.1. Initial thiosulfinate levels, in descending order of abundance, occurred at pH 6.1 > 5.0 > 4.2 > 3.2 for extracts subject to immediate pH control. However, over 21 days incubation, the lowest residual levels (ranging 20–60% of maximum levels) were observed for extracts adjusted to pH 3.2 and 6.1. Extracts subject to delayed (10 min after tissue disruption) pH control (initial extract pH of 5.2–5.4) displayed the greatest extent of discoloration, in descending order, at pH 4.0 > 5.0, 6.0 > 3.0. In these samples, initial thiosulfinate levels were similar and the greatest residual thiosulfinate levels over the 21-day incubation period were observed at pH 3.0 and 4.0 (about 50% of maximum levels), with the lowest residual levels observed for extracts adjusted to pH 6.0 (about 20% of maximum levels). Tissue extracts supplemented with 9- to 18-fold excess MCSO were subject to modest increases in both extent of discoloration and thiosulfinate levels.  相似文献   

11.
Transformation of chloride (Cl(-)) to organic chlorine (Cl(org)) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. There are still few measurements of chlorination rates in soils, even though formation of Cl(org) has been known for two decades. In the present study, we compare organic matter (OM) chlorination rates, measured by (36)Cl tracer experiments, in soils from eleven different locations (coniferous forest soils, pasture soils and agricultural soils) and discuss how various environmental factors effect chlorination. Chlorination rates were highest in the forest soils and strong correlations were seen with environmental variables such as soil OM content and Cl(-) concentration. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Cl(org) pool and in turn to a high internal supply of Cl(-) upon dechlorination. This provides unexpected indications that pore water Cl(-) levels may be controlled by supply from dechlorination processes and can explain why soil Cl(-) locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl(-) deposition.  相似文献   

12.
The short-term (3 months) dynamics of bioavailable copper (Cu) species was determined in soils amended with various amounts of manure and Cu. Bioavailable Cu species were operationally defined as those species that were able to induce gene expression in a Cu-specific Pseudomonas fluorescens biosensor. Biosensor measurements were backed by analysis of total Cu in soil and of total Cu and free Cu2+ ion activity in solution. Cu bioavailability relative to the total Cu concentration increased dramatically with increasing Cu loading of manure and with increasing manure amendment to soil. In both cases, the immediate increase in bioavailability could be explained in part by increased Cu concentration in solution and in part by an increased bioavailability of dissolved Cu species. In contrast to Cu bioavailability, Cu2+ ion activity decreased progressively with increasing manure loading. Cu bioavailability declined rapidly during the weeks after manure amendment concomitant with a marked slow-down of C mineralization indicating a shift from initially bioavailable Cu-dissolved organic matter (Cu-DOM) complexes to nonavailable Cu-DOM complexes over time. Our data do not support the conventional view of metal bioavailability being primarily related to the free metal ion activity and strongly suggest differential bioavailability of Cu-DOM complexes in manure-amended soils.  相似文献   

13.
Dissolved natural organic matter (NOM) plays an essential role in freshwater geochemical and biochemical processes. A major property, its redox behavior, can be attributed to the chinone building blocks, which can form stable radicals. However, electron paramagnetic resonance (EPR) data indicating free radicals on solid NOM are sparse. Here we present EPR spectra of 23 NOM from European surface waters isolated by reverse osmosis. The organic radical concentrations of NOM ranged from 5 x 10(15) to 1.84 x 10(17) spins g(-1), and g values ranged from 2.0031 to 2.0045. Number and type of organic radicals in solid NOM are significantly influenced by the pH of raw water. EPR experiments indicate the presence of semiquinone-type radicals in coexistence with carbon-centered "aromatic" radicals, with the semiquinone-type radicals dominating at alkaline pH. Basically these processes are reversible. Organic radical concentrations in NOM adjusted to pH 6.5 before freeze-drying correlate with iron and aluminum contents. UV- and VIS-irradiation of solid NOM can lead to more than a 10-fold increase of the concentration of organic radicals. These radicals were long-lived and had the same g value as the original radical. Similar effects were not observed with isolated humic and fulvic acids, demonstrating the limited reflection of environmental properties of organic carbon by the classical isolation procedure.  相似文献   

14.
15.
16.
Modeling metal binding to soils: the role of natural organic matter   总被引:4,自引:0,他引:4  
The use of mechanistically based models to simulate the solution concentrations of heavy metals in soils is complicated by the presence of different sorbents that may bind metals. In this study, the binding of Zn, Pb, Cu, and Cd by 14 different Swedish soil samples was investigated. For 10 of the soils, it was found that the Stockholm Humic Model (SHM) was able to describe the acid-base characteristics, when using the concentrations of "active" humic substances and Al as fitting parameters. Two additional soils could be modeled when ion exchange to clay was also considered, using a component additivity approach. For dissolved Zn, Cd, Ca, and Mg reasonable model fits were produced when the metal-humic complexation parameters were identical for the 12 soils modeled. However, poor fits were obtained for Pb and Cu in Aquept B horizons. In two of the soil suspensions, the Lund A and Romfartuna Bhs, the calculated speciation agreed well with results obtained by using cation-exchange membranes. The results suggest that organic matter is an important sorbent for metals in many surface horizons of soils in temperate and boreal climates, and the necessity of properly accounting for the competition from Al in simulations of dissolved metal concentrations is stressed.  相似文献   

17.
18.
Samples from Ap horizons of 36 cultivated Wisconsin fields were tested for concurrent availability of Cu, Zn and Mn. The effects of soil pH, organic matter, and available P were evaluated by using four chemical extract ants. Oats were used as the test crop and were grown using a self-watering pot-culture technique in a plant-growth room. The divergent soils had the following averages: pH, 6–4; organic matter, 2–6%; available P, 37 ppm; total Cu, 20 ppm; total Zn, 35 ppm; and total Mn, 631 ppm. Concentrations of the micronutrient elements in plants and soils were determined by atomic absorption spectrophotometer. NPK fertilisation resulted in greater plant uptake of Cu, Zn and Mn. Significant interactions between the soil properties and the different chemical fractions influenced the plant uptake of each micro-element; interactions between Cu, Zn and Mn in the same chemical fraction also influenced their individual uptake. Copper uptake was best predicted by inclusion particularly of soil pH, or the same chemical fractions of Zn and Mn in the regression equation; Zn uptake by inclusion of soil organic matter and available P, Mn uptake, or the chemical fractions of Cu and Mn; and Mn uptake by inclusion of available P, Cu chemical fraction, or Zn uptake in the equation. The extractants N ammonium acetate (pH 7) 10 · 01 M EDTA and 0·1 N -HCI show promise in soil tests for the simultaneous availability of Cu, Zn and Mn.  相似文献   

19.
A chemical model (constructed in the ORCHESTRA modeling framework) of an organic soil horizon was used to describe soil solution data (10 cm depth) and assess if seasonal variations in soil solution dissolved organic carbon (DOC) could be explained by purely abiotic (geochemical controls) mechanisms or whether factors related to biological activity are needed. The NICA-Donnan equation is used to describe the competitive binding of protons and cations and the charge on soil organic matter. Controls on organic matter solubility are surface charge and a parameter, gamma, that accounts for the distribution of humic molecules between hydrophobic and hydrophilic fractions. Calculations show that the variations in solute chemistry alone are not sufficient to account for the observed variations of DOC, but factors that alter gamma, such as biological activity, are. Assuming that DOC in organic soils is derived from soluble humic material and that gamma is modified seasonally due to biological activity (with monthly soil temperature used as a surrogate for biological activity) we are able to model the observed seasonality of soil solution DOC over a 10-year period. Furthermore, with modeled DOC coupled to other geochemical processes we also model soil solution pH and Al concentrations.  相似文献   

20.
Antioxidant activity (capacity or potential) is widely used as parameter to characterize different substances and mixtures, which is able to scavenge or neutralize free radicals. Recently, ABTS assay has been the most widely employed method for estimating antioxidant activity. The method is based on the spectrophotometric measurement of ABTS cation radical (ABTS•+) concentration changes resulting from the ABTS•+ reaction with antioxidants. Yet little is known about factors influencing the kinetics that reaction i.e., about factors affecting the estimation of antioxidant activity of examined compounds’. The paper shows that metal ion type and concentration, water content and pH of the measuring system all significantly influence the estimation of antioxidant activity in ABTS assay and thus make the estimation of correct antioxidant properties of plant and food extracts difficult. Butylhydroxytoluene (BHT) was used as standard antioxidant in the performed experiments. The relationships discussed in this paper indicate the necessity of standardizing the ABTS method and reveal the complexity of estimating adequate antioxidant activity of examined substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号