首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
压差传感器用于伺服系统作动器两腔压力差的测量,文中针对高可靠性、高精度、耐高温、小型化压差传感器的应用需求,提出了高可靠性压差传感器的设计方案并进行测试,主要包括芯体设计、结构设计和电路设计。该产品采用SOI硅晶圆材料制作压力敏感芯片,可在150℃下正常工作。传感器通过性能测试以及环境试验,试验结果表明该传感器能够满足实际使用要求,在150℃下温度漂移和灵敏度漂移均小于±0.1%FS/℃。  相似文献   

2.
MEMS高温接触式电容压力传感器   总被引:4,自引:0,他引:4  
本文介绍了一种用SOI硅片和硅-硅键合MEMS技术制作的高温接触式电容压力传感器,并给出了详细的工艺制作流程。在对测试装置、测试电路进行了详细地介绍和深入分析后,用此测试电路对制作的传感器器件进行了高温测试。测试结果表明,传感器在小于250kPa的室温条件下工作,传感器的灵敏度为0.54mV/kPa;而在400℃条件下工作,传感器的灵敏度为0.41mV/kPa,传感器的零点飘移为0.1mV/℃。可见这种微传感器可在低于450℃的条件下正常工作,且具有很大的线性工作范围、良好的稳定性和较高的灵敏度。  相似文献   

3.
工业领域中,目前研发的高精度MEMS压力传感器大多基于接触电容式结构,这种结构虽然一定程度上改善了普通电容式压力传感器的非线性问题,但其线性响应范围较小,限制了应用与开发,线性度也需要进一步提高。文中采用联动膜电容式压力敏感结构对其进行了研究与制作。基于有限元方法对压力敏感结构的响应特性进行了分析,仿真结果表明,该结构在增加线性响应范围和提高线性度方面表现出显著优势。试制了量程为100 kPa的样品芯片,测试结果表明,在25~100 kPa的压力范围内,样品芯片的灵敏度达到0.058 pF/kPa,其非线性度为4.83%FS。  相似文献   

4.
基于温度补偿方法去敏的新型光纤光栅压力传感器   总被引:6,自引:2,他引:4  
本文阐述了一种带温度补偿、基于平面薄板结构的新型光纤光栅压力传感器.作为弹性体的压力敏感薄板,其硬心通过一L型刚性位移传递机构拉动压力敏感FBG;温度去敏通过被动温度补偿和残留温度效应实时修正来解决.传感器性能指标测试如下:重复性0.066%FS,回程误差0.846%FS,线性度0.102%FS,传感器精度±0.591%FS;在-30℃到+80℃范围内,传感器零点漂移为+1.720 8%FS,灵敏度漂移为+0.010 4%FS,传感器温漂为+1.731 2%FS.  相似文献   

5.
MEMS电容应变传感器   总被引:2,自引:1,他引:2  
本文详细介绍了一种用硅玻璃键合工艺制作的微型梁式电容应变传感器,通过ANSYS软件并结合MEMS器件的特点进行优化,设计并制作了由MEMS工艺实现的微型梁式电容应变传感器.为保证应变器件稳定工作,在测量电路中加一直流静电驱动电压在电容器的极板之间,以保证建立的电场在两极之间产生一个静电力,引起膜片发生向下形变的弯曲,从而保证作用在轴向的应力不会使应变梁产生失稳.文中详细给出了工艺流程和测试结果,通过实验测试证明,用这种方法制作的电容应变器件具有良好的线性、较小的滞后和稳定的工作特性,其中应变灵敏度达10 fF/MPa,测量误差小于1%FS.  相似文献   

6.
为满足液体、气体多种介质中高精度压力测量要求,本文设计了一种介质隔离的高精度微机械电子系统(MEMS)谐振式压力传感器。为降低充油封装过程中压力传递损耗以及非线性问题,本文对波纹膜片的结构参数进行了仿真优化并确定了适合传感器芯体的膜片参数。采用MEMS加工工艺和真空微量充灌方法,完成了MEMS谐振式压力传感器芯体制作与充油封装。利用双谐振器压力、温度多参数协同敏感方法,在不外加温度传感器的条件下实现了温度自补偿。测试表明,封装后的传感器在-55℃~85℃工作温度范围内,准确度优于±0.01%FS、迟滞性误差优于0.006%FS、非线性误差优于0.003%FS、重复性误差优于0.008%FS。  相似文献   

7.
扩散硅压阻传感器是七十年代出现的新型检测仪表。本文描述了该传感器的特性、原理、硅压敏膜片的设计理论。同时介绍了传感器的压力量程计算方法、装配结构、扩散工艺、低温玻璃封接技术、球焊技术等研究成果,使传感器精度和长期稳定性显著提高。其精度达到001%FS,非线性小于0.05%,迟滞小于0.02%,不重复性小于0.02%。  相似文献   

8.
为获得精确扭矩信息,通过对传感器传统十字型弹性梁结构分析,以等强度梁理论限定最小梁尺寸,进行不同尺寸梁结构拓扑优化求解,最终提出一种高灵敏度和良好抗串扰能力的X型弹性梁结构电容式扭矩传感器。传感器敏感元件为X型梁,此结构可以使传感器在满足强度条件下实现更小刚度以提高传感器的灵敏度;传感器转换元件为差动结构平行极板电容器,提高了传感器灵敏度并有效降低了传感器非线性误差,此外设计了带槽型孔的PCB板使得电容器初始极距可手动调节,更容易保证了电容器的初始极距;制作传感器并通过实验验证,结果显示,该传感器的灵敏度为871.9(CDC/N·m),迟滞为0.16%FS,串扰误差为0.73%FS。对实验结果采用最小二乘法进行三次多项式拟合,得到传感器符合度为0.14%FS。  相似文献   

9.
热激励硅谐振式压力传感器的研制   总被引:1,自引:0,他引:1  
介绍了基于表面微加工工艺和多孔硅牺牲层技术,设计并制作出梁膜一体化的热激励硅谐振梁压力传感器,给出了制作的工艺过程和参数,测试了传感器在真空中开环状态下的谐振频率一压力特性及幅频特性,其灵敏度达到54.89Hz/kPa,Q值大于20000,0~300kPa范围内线性相关系数为0.9997。  相似文献   

10.
用于恶劣环境的耐高温压力传感器   总被引:1,自引:0,他引:1  
为了解决如高温200℃等恶劣环境下的压力测量问题,基于微机电系统(MEMS)和高能氧离子注入(SIMOX)技术,研制了一种量程为0~120 kPa的压阻式压力传感器。该传感器芯片由硅基底、薄层二氧化硅、惠斯登电桥结构的硼离子注入层、氮化硅应力匹配层、钛-铂-金梁式引线层和由湿法刻蚀形成的空腔组成。在氧剂量1.4×1018/cm2和注入能量200 keV条件下,由高能氧离子注入技术形成厚度为367 nm的埋层二氧化硅层,从而将上部测量电路层和硅基底隔离开,解决了漏电流问题,使得传感器芯片可以在高温200 ℃以上的环境下使用。为了提高传感器在宽温度范围内的稳定性,对温度补偿工艺进行了研究,补偿后的传感器灵敏度温度系数和零位温度系数很容易控制在1×10-4/℃·FS。实验标定结果表明:在200 ℃下,研发的耐高温压力传感器具有很好的工作性能,其线性度误差达0.12%FS、重复性误差为0.1%FS、迟滞误差为0.12%FS,精度达0.197%FS,满足油井、风洞、汽车和石化工业等现代工业的应用需求。  相似文献   

11.
多晶硅纳米薄膜牺牲层压力敏感结构设计   总被引:1,自引:0,他引:1  
为使多晶硅纳米薄膜良好的压阻特性在MEMS(微机电系统)压阻传感器中得到有效应用,在设计牺牲层结构压力传感器芯片中探索性地采用了多晶硅纳米薄膜作为应变电阻,并给出这种传感器的设计方法。分析了牺牲层结构弹性膜片的应力分布对传感器灵敏度的影响,优化设计了量程为0~0.2 MPa多晶硅纳米膜压力传感器芯片的结构参数。有限元法仿真结果表明:在保证传感器灵敏度大于50 mV/(MPa.V)的前提下,零点温漂系数可小于1×10-3FS/℃;灵敏度温漂(无电路补偿)可小于1×10-3FS/℃.为高灵敏、低温漂、低成本的高温压力传感器集成化发展提供了一条可行途径。  相似文献   

12.
微机械氮化硅梁谐振式压力传感器   总被引:4,自引:0,他引:4  
报导一种新型的电热激励、压阻拾振的氮化硅梁谐振式压力传感器。器件采用微电子机械加工技术和键合技术研制。谐振频率85kHz,空气中品质因素Q值接近1000,在真空中达到40000。采用闭环自激振荡方式测定压力传感器的压力特性,压力测试范围0-400kPa,灵敏度23.8Hz/kPa。  相似文献   

13.
石墨烯具有优异机电性能和超大比表面积,其显著压阻效应可应用于高性能压力传感,为探索下一代超灵敏传感器开 辟新方向。 目前在研石墨烯压力传感器存在石墨烯悬空破损严重、成品率低等难题,其根源在于,石墨烯除胶释放过程应力过 载。 本文提出以 PMMA/ 石墨烯复合异质薄膜替代单层石墨烯的压力传感器新方案,设计 COMS 兼容新工艺,可实现传感器规 模化制备,成品率接近 100% 。 测试表明,本文传感器灵敏度高达 7. 42×10 -5 / kPa,优于与已报道结果。 提取传感器压力测量精 度约为 2. 6% ~ 3. 5% ,比国外禁运高性能压力传感器精度(0. 05% ~ 0. 01% FS)差近 2 个数量级,其主因在于测量系统电噪声及 受工艺污染石墨烯本征电阻噪声。 当前石墨烯压力传感器研究的重点应聚焦精度指标的提高,而不是片面追求灵敏度指标。  相似文献   

14.
为了研究不同微结构对柔性电容式压力传感器性能的影响,采用成本较低的旋涂技术制备了无微结构、单层微结构和双层咬合微结构的柔性电容式压力传感器。通过对三种传感器进行测试试验,对比分析了具有不同微结构传感器的灵敏度,同时,对具有单层砂纸微结构传感器的响应特性、重复特性和迟滞特性进行了测试分析。试验结果表明,在20 kPa的载荷下,具有单层砂纸结构的柔性电容式压力传感器相较于其他两种传感器具有较高的灵敏度,在0~4 kPa的压力范围内灵敏度为0.451 kPa-1,4~6 kPa压力范围内灵敏度为0.14 kPa-1,6~25 kPa压力范围内灵敏度为0.03 kPa-1。制备的传感器具有较强的响应特性、良好的恢复性和稳定性,能够适应柔性可穿戴电子器件的应用需求。  相似文献   

15.
研究了一种量程为20kPa的压阻式微压力传感器,同时采用ANSYS仿真得出影响传感器性能的一些规律。应用小挠度理论设计计算了压阻式硅传感器方形弹性膜片结构,并对圆形膜片与方形膜片进行了比较,同时设计了硅芯片以及压敏电阻的尺寸和阻值。通过模型分析和对方型硅膜片的模拟计算,确定了压敏电阻最佳放置位置,来提高灵敏度;并在各个不同的压力下仿真出应力分布图、得出输入—输出关系图及应力峰值。研究为压阻式微压力传感器的结构以及优化、稳健设计提供了一定参考。  相似文献   

16.
SOI压力传感器及其应用   总被引:1,自引:0,他引:1  
SOI压力传感器是一种新型的、先进的物性型压力传感器.其采用硅氧化物实现压力芯片的敏感元件和与基片之间的电隔离,替代传统的pn结电隔离技术,打破极限使用温度上限的局限性,不存在微漏电通道,保障在高温条件下长期稳定工作.SOI压力传感器可广泛应用于石油、化工、冶金、航天、航空、船舶等领域的高温压力检测,极好地解决了高温传感器性能指标稳定性差,高低温宽温区的性能兼容性和分散性较大,环境试验适应性差、寿命短和可靠性低等技术难题.  相似文献   

17.
耐高温压阻式压力传感器研究与进展   总被引:1,自引:0,他引:1  
传统的硅扩散压阻式压力传感器用重掺杂4个P型硅应变电阻构成惠斯顿电桥的力敏检测模式,采用PN结隔离,高温压阻式压力传感器取消了PlN结隔离,与半导体集成电路平面工艺兼容,符合传感器的发展方向。根据力敏材料的分类,分别介绍了多晶硅中高温压力传感器、SiC高温压力传感器和单晶硅SOI(silicon on insulator)高温压力传感器的基本工作原理和国内外的发展现状,重点论述了BESOI(bonding and etch-backSOI)、SMARTCUT和SIMOX(separation by implanted oxygen)技术的SOI晶片加工工艺。以及由此晶片微机械加工成的芯片封装的高温微型压力传感器部分特性,对此领域的发展作了展望。  相似文献   

18.
This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is 5 mmX 5 mm. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.  相似文献   

19.
硅微机械谐振压力传感器是目前精度最高、长期稳定性最好的压力传感器之一,是航空航天、工业过程控制和其他精密测量领域压力测试的最佳选择。系统阐述30年来国内外硅微机械谐振压力传感器技术的研究成果,简单介绍硅微机械谐振压力传感器的分类及工作原理,针对压力敏感膜片与谐振器复合结构和振动膜结构两种主要的芯体结构形式,详细论述硅微机械谐振压力传感器的研究历史、主要研究机构、国内外发展现状以及最新的研究成果,重点根据不同激励与检测方式对各种硅微机械谐振压力传感器的芯体结构进行深入分析比较。在此基础上,总结归纳不同芯体结构及其激励与检测方式的特点,并对硅微机械谐振压力传感器的未来发展趋势进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号