首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bonding is a bottleneck for mass-production of polymer microfluidic devices. A novel ultrasonic bonding method for rapid and deformation-free bonding of polymethyl methacrylate (PMMA) microfluidic chips is presented in this paper. Convex structures, usually named energy director in ultrasonic welding, were designed and fabricated around micro-channels and reservoirs on the substrates. Under low amplitude ultrasonic vibration, localized heating was generated only on the interface between energy director and cover plate, with peak temperature lower than T g (glass transition temperature) of PMMA. With the increasing of temperature, solution of PMMA in isopropanol (IPA) increases and bonding was realized between the contacting surfaces of energy director and cover plate while no solution occurs on the surfaces of other part as their lower temperature. PMMA microfluidic chips with micro-channels of 80 μm × 80 μm were successfully bonded with high strength and low dimension loss using this method.  相似文献   

2.
Fracture of integrated metal microelectrodes likely happens during the thermal bonding process of PMMA [poly (methylmethacrylate)] microfluidic chips. In this paper, the fracture behaviors are studied. The fracture is mainly caused by the plastic deformation of the electrode plate (the PMMA plate with microelectrodes) and the thermal stress of microelectrodes, which is due to the high bonding temperature. To decrease the bonding temperature, a plasma assisted thermal bonding method is evaluated and first used to eliminate the fracture of microelectrodes. In this process, the surface of the cover plate (the PMMA plate with microchannels) is modified using oxygen plasma before the electrode plate is thermally bonded to the cover plate. The parameters of the oxygen plasma treatment are optimized, and the contact angle is decreased from 71.7° to 43.6°. The thermal bonding temperature is optimized, which decreases the temperature from 100 °C to 85 °C. Testing of bonding strength shows an average failure pressure of 1.75 MPa, which is comparable to the bonding strength of 1.46 MPa for chips bonded at 100 °C without plasma modification. In order to demonstrate this bonding method, a PMMA microfluidic chip with integrated copper interdigitated microelectrode arrays for AC electroosmotic pump is fabricated.  相似文献   

3.
Recently microfluidic devices have emerged as a viable technology for the miniaturization of high throughput tools for analytical tasks related to structural biology such as screening of crystallization conditions and structural analysis. This work reports the manufacture of microfluidic chips in transparent thermoplastic polymers [poly(methylmethacrylate) (PMMA), and cyclic olefin copolymer (COC)] using two complementary technologies, injection moulding for the fabrication of the fluidic level and laser transmission welding for the sealing of the cover. A steel mould insert was produced by laser micro caving using a solid state laser radiation source (Nd:YAG, wavelength 1,064 nm). Fluidic chips of ~670 μm thickness comprising channels of 50 μm depth and width down to 50 μm were injection moulded in PMMA and COC. Joining of transparent thin cover film to the micro-injected fluidic level was performed by laser transmission welding using high power diode laser radiation (wavelength 940 nm) and an intermediate thin absorbing layer with a thickness of about several nanometers.  相似文献   

4.
Finding out a rapid and reliable bonding method for plastic microfluidic chips with PCR functions is challenging for analytical chemistry and biochemistry. A rapid, reliable covalent bonding method is introduced for fabricating PMMA PCR biochips with long channels and thin walls. The bonding strength of ~5 MPa was obtained and bulk cohesive failure occurred during tensiling tests. Preliminary leaking tests indicate that photolamination bonding can be implemented readily in the fabrication of PMMA PCR biochips.  相似文献   

5.
Sun  Lei  Liu  Lingpeng  Qi  Liping  Guo  Ran  Li  Kehong  Yin  Zhifu  Wu  Dongjiang  Zhou  Jiangang  Zou  Helin 《Microsystem Technologies》2020,26(3):861-866

Micro–nanofluidic chips have been widely applied in biological and medical fields. In this paper, a simple and low-cost fabrication method for micro–nano fluidic chips is proposed. The nano-channels are fabricated by thermal nano-imprinting on an SU-8 photoresist layer followed by thermal bonding with a second SU-8 photoresist layer. The micro-channels are produced on the second layer by UV exposure and then thermal bonded by a third layer of SU-8 photoresist. The final micro–nano fluidic chip consists of micro-channels (width of 200.0 ± 0.1 μm and, depth of 8.0 ± 0.1 μm) connected by nano-channels (width of 533 ± 6 nm and, depth of 372 ± 6 nm), which has great potential in molecular filtering and detection.

  相似文献   

6.
A novel equivalent circuit model of capacitively coupled contactless conductivity detection (C4D) on microfluidic chips is presented. The impedance of the solution in microchannels facing the two electrodes for C4D was first introduced in the model of C4D on microfluidic chips. The electrodes and the solution facing electrodes were divided into individual segments in the model, and the effect of the length of divided segments on the model was studied. A back-calculating method was put forward to calculate the stray capacitance between the electrodes, and the variation between the calculated value and the simulated value was only 6 %. To evaluate the accuracy of the model, a hybrid poly (methyl methacrylate) (PMMA)/polydimethylsiloxane (PDMS) microchip was fabricated and a simple model was built. Compared with the outputs of the simple model, the data predicted by the novel model show a much closer fit to experimental results, and the variations were within 8 % over a wide concentration range of 1–500 μm for potassium chloride.  相似文献   

7.
Free-standing SU-8 chips with enclosed microchannels and high density of fluidic inlets have been made in a three-layer process which involves SU-8 to SU-8 adhesive bonding and sacrificial etching. With this process we can fabricate microchannels with depths ranging from 10 to 500 μm, channel widths from 10 to 2000 μm and lengths up to 6 cm. The process is optimized with respect to SU-8 glass transition temperature. Thermal stresses and thickness non-uniformities of SU-8 are compensated by novel mask design features, the auxiliary moats. With these process innovations filling of microchannels can be prevented, non-bonded area is minimized and bonding yields are 90% for large-area microfluidic chips. We have released up to 100 mm in diameter sized microfluidic chips completely from carrier wafers. These free-standing SU-8 chips are mechanically strong and show consistent wetting and capillary filling with aqueous fluids. Fluidic inlets were made in SU-8 chips by adding one lithography step, eliminating through-wafer etching or drilling. In our process the inlet size and density is limited by lithography only.  相似文献   

8.
Jiang  Xinyan  Wang  Dong F.  Yin  Zhifu 《Microsystem Technologies》2019,25(3):1043-1050

The solution to the commercialization of polymer microfluidic chips lies in the development of a low-cost and concise method. We present in this paper a gap-control method for obtaining low cost microfluidic chips on PMMA (polymethyl methacrylate) sheets based on traditional 3D printing technique—fused deposition modeling. The influence of 3D printing parameters such as printing temperature, printing speed, wire flow rate and initial layer thickness on printing quality is studied by experiments. The effect of O2 plasma parameters such as chamber power and treatment time on the adhesion strength between printed PLA (polylactic acid) structures and PMMA substrate is investigated. The dye filling tests demonstrate that there is no blocking or leakage over the entire microchannels. With this newly developed technology, low-cost and large scale microfluidic chips can be fabricated, which allows commercial manufacturing of microchannels over large areas.

  相似文献   

9.
In this article we demonstrate a simple yet robust rapid prototyping manufacturing technique for the construction of autonomous microfluidic capillary systems by means of CO2 laser processing. The final packaging of the microfluidic device is demonstrated using thermal lamination bonding and allows for a turnaround time of approximately 30 min to 3 h from activation of the laser system to device use. The low-cost CO2 laser system is capable of producing repeatable microfluidic structures with minimum feature sizes superior than 100–150 μm over channel depths of more than 100 μm. This system is utilised to create capillary pump and valve designs within poly (methyl methacrylate) (PMMA) substrates. Such components are part of advanced systems that can self initiate and maintain the flow of various volumes of fluids from an input to a collection reservoir, whilst also controlling the progression of the flow through the various demonstrated valve type structures. The resulting systems could prove a very useful alternative to traditional, non-integrated, fluidic actuation and flow control systems found on-chip, which generally require some form of energy input, have limited portable capabilities and require more complex fabrication procedures.  相似文献   

10.
A commercially available CO2 laser scriber is used to perform the direct-writing ablation of polymethyl-methacrylate (PMMA) substrates for microfluidic applications. The microfluidic designs are created using commercial layout software and are converted into the command signals required to drive the laser scriber in such a way as to reproduce the desired microchannel configuration on the surface of a PMMA substrate. The aspect ratio and surface quality of the ablated microchannels are examined using scanning electron microscopy and atomic force microscopy surface measurement techniques. The results show that a smooth channel wall can be obtained without the need for a post-machining annealing operation by performing the scribing process with the CO2 laser beam in an unfocused condition. The practicality of the proposed approach is demonstrated by fabricating two microfluidic chips, namely a cytometer, and an integrating microfluidic chip for methanol detection, respectively. The results confirm that the proposed unfocused ablation technique represents a viable solution for the rapid and economic fabrication of a wide variety of PMMA-based microfluidic chips.  相似文献   

11.
Liu  Kan  Xiang  Jianzhen  Ai  Zhao  Zhang  Shoukun  Fang  Yi  Chen  Ting  Zhou  Qiongwei  Li  Songzhan  Wang  Shengxiang  Zhang  Nangang 《Microsystem Technologies》2017,23(6):1937-1942

A new PMMA microfluidic chip fabrication method by combining laser ablation technology with low-temperature bonding using optically clear adhesive (OCA) film and liquid optically clear adhesive (LOCA) was presented in this paper. The deformation and clogging issues of the microfluidic channel were well solved. The effective bonding area ratio of microfluidic chips could be greatly improved by adjusting bonding temperature and bonding time. The crevices around the microchannels were effectively eliminated by coating treatment of LOCA. The bonding strength and waterproof of PMMA microfluidic chips coating with/without LOCA were also evaluated in this paper.

  相似文献   

12.
Poly-methyl methacrylate (PMMA) has been widely used for optical and microfluidic devices. This paper is devoted to the development of an effective low-temperature PMMA bonding technology. For bonding, Carbon dioxide (CO2) has been used as gas solvent and pressuring agent. The bonding temperature thus is lowered and the pressing pressure becomes uniform. An innovative two-stage CO2-assisted thermal fusion bonding process has been developed which takes the soaking and releasing times of CO2 into account. The experimental results show that this new process significantly enhances the flatness after bonding process and increases bonding area and bonding strength. By coating a layer of PMMA solution on bonding surface, the diffusion number of chain increases, and thus further increases the bonding strength.  相似文献   

13.
A novel method for fabricating nano- or submicro-fluidic PMMA chips using photoresist-free UV-lithography and UV-assisted low-temperature bonding was developed. The nano- or submicro-channels were fabricated by exposing the PMMA substrate to the UV-light through a mask for a certain time. The PMMA substrate with channels and another flat PMMA cover sheet were pretreated with the UV-light for 2 h before they were brought together in running water. The bonding was carried out under a pressure of (1.19 ± 0.12) × 10Pa and at a temperature of 45°C for 35 min. The chips bonded in this way could bear a tensile of 6.71 ± 2.50 MPa, and the deformation of the bonded channel was about 13%. A hybrid micro- and nano-fluidic PMMA chip fabricated with the developed method was demonstrated for the test of the electrokinetically driven ion enrichment and ion depletion.  相似文献   

14.
Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation efficiency of the passive separator device, and the separation efficiency of 66.6 % was achieved. The optimum purity efficiency of 70 % was achieved for 1:100 dilution times.  相似文献   

15.
Rapid and uniform reagent distribution is critical to the performance of a high-throughput microfluidic system, and its geometric design of the microchannels dominates the accuracy and distribution uniformity of the daughter droplets. This research’s purpose is to optimize the geometry of the T-junction to achieve a uniform distribution of two daughter droplets from a single liquid droplet. Models of gas–liquid flow were realized in the transient numerical simulations to investigate the geometry-dependent pressure distributions and the flowing velocities inside the droplet during the splitting process that leads to an improved design of the T-junction that can increase the stability of the droplet splitting process. To validate that increasing the stability of the splitting process can help improve the distribution uniformity of the daughter droplets, microfluidic devices were manufactured on poly(methyl methacrylate) substrates with micromilling and thermal bonding for experiments. In the multiple experiments, 2 μl of reagent was loaded into the microfluidic device and a uniform pneumatic pressure was applied to push the droplet into the T-junction for splitting. The experimental results, after statistical analysis, show that the improved T-junction can achieve better distribution uniformity of the daughter droplets with a higher reliability and a less reagent loss during the splitting process.  相似文献   

16.
We present a study on the use of corona discharge surface treatment to achieve a fast thermal diffusion bonding process for the creation of microfluidic chips. Wafer scale bonding at 100 mm diameter was attempted. Polymethyl methacrylate (PMMA) wafers were hot embossed to create microchannels before bonding to another blank PMMA wafer. Corona discharge treatment of the PMMA resulted in a more hydrophilic surface. The average water contact angle on PMMA surface decreased from 74.5° before treatment to 35.5° after the treatment. The optimized bonding condition was found to be: 108°C for 4 min at a contact pressure of 3.1 MPa. The bonded chips could withstand an internal gauge pressure in the microchannels of at least seven bars. The rectangular shape of the cross section of the microchannels was conserved with some contraction in the dimensions of 3.7% on the mean widths and 2.1% on the mean depths. Bonding strength was found to increase with the bonding temperature and time while the effect of bonding pressure is evident at lower pressures. At higher pressures, the effect of bonding pressure seemed to have reduced. These effects could be explained by the diffusion mechanisms of the process.  相似文献   

17.
A simple and low budget microfabrication method compatible with mass production was developed for the integration of electrodes for capacitively coupled contactless conductivity detection (C4D) in Lab on a Chip devices. Electrodes were patterned on a printed circuit board using standard processing. This was followed by lamination-photolithography-lamination to cover the electrodes in dry film photoresist (DFR) using an office laminator. This resulted in a flush, smooth surface on top of the detection electrodes, enabling subsequent integration of a microfluidic network at a distance dictated by the thickness of the DFR (17 μm, 30 μm and 60 μm were used in this work). This process was applied to create two types of detectors, re-usable detectors to be used in combination with a separate microfluidic network and integrated detectors where the microfluidic network is irreversibly sealed to the detector. A poly(dimethylsiloxane) (PDMS) slab containing the microfluidic network was positioned on top of the re-usable detectors to create the PDMS hybrid devices. The integrated DFR devices were created by patterning and sealing the microchannel in DFR using subsequent lamination and lithographic steps. The sensitivity of the C4D made using this new technology for small inorganic cations was between 6 and 20 μM, which is comparable with devices made using significantly more advanced technologies. Where the 17 μm film slightly improved the sensitivity, the use of 30 μm thick insulating films was preferred as these did not impose significant restrictions on the applicable field strengths.  相似文献   

18.
This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free-surface thermal compression molding method. The laser fabricated poly(methyl methacrylate) (PMMA) sheet is used as the mold for the thermal compression molding process. With different surface treatment methods of the PMMA mold, microlenses with either convex or concave profiles could be achieved during the thermal molding process. By integrating the microlenses in the microfluidic systems, observing the flow inside the microchannels is easier. This new technique is rapid, low cost, and it does not require cleanroom facilities. Microlenses with both convex and concave profiles can be easily fabricated and integrated in microfluidic system with this technique.  相似文献   

19.
All PMMA-based nanofluidic chips are becoming increasingly important for biological and medical applications. To fabricate PMMA nanofluidic chips, the open nano-trenches should be sealed by thermal bonding method. However, the present thermal bonding method suffers from high deformation of nano-trenches due to PMMA softening near glass transition temperature. In this work, a novel bonding technique, based on acetone and ethanol (v:v, 8:2) treatment, is developed to adjust the Young’s modulus of PMMA in its surface layer. By optimizing nanoimprinting and bonding process, PMMA nanofluidic chip was fabricated without undesired nano-trench deformation. The integrity of the enclosed PMMA nanofluidic system was verified by a fluorescence filling experiment.  相似文献   

20.
This paper will track the design and results of an injection molding tool developed to manufacture microfluidic chips. The mold design and injection molding process was complicated by the presence of integrated capillary fluidic interconnects. We determined that design of the runner and gate system responsible for delivering molten plastic to the cavity had a significant impact on the quality of parts produced by the mold and the size of the process window. Numerical results confirm our findings that reducing gate lengths and increasing part thickness dramatically improved the filling profile and lowered injection pressures by 37%. Finally, the influence of gate location on part shrinkage is analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号