首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of titania (anatase)-supported vanadia catalysts ranging in V2O5 content from 0.4 to 9.9 mol% was prepared by wet impregnation technique, characterized by BET surface area measurement and X-ray diffraction, and evaluated for ammoxidation of 3-picoline. The average oxidation number of vanadium in the fresh and used catalysts was determined by titrimetric methods. The ammoxidation activity and the average oxidation number were observed to increase with vanadia loading up to 3.4 mol% in the catalyst which corresponds to a monolayer coverage. The phase transformation of anatase to rutile after the reaction was observed at a V2O5 loading of 5.9 mol%. The slow decrease of ammoxidation activity beyond 3.4 mol% V2O5 was attributed to the coverage of active monomeric VOx species on the support by bulk vanadia and by other oxides, and also to compound formation with ammonia.  相似文献   

2.
An investigation has been carried out of the effect of vanadia loading on the activity and selectivity ofV2O5TiO2 aerogel catalysts, prepared by a two-step procedure, for the reduction of NO by propane. The structure of catalysts have been characterized by laser Raman spectroscopy and XRD measurements. At vanadia loading levels below ca. 4.4 wt%, the vanadia is present in the form of coordinated polymeric species, whereas crystallites of V2O5 are formed at higher vanadia contents. At this critical level of 4.4 wt% V2O5, the kinetic measurements showed also a maximum in the activity per mass of catalyst which very likely indicated that the coordinated polymeric surface species are more active than crystalline V2O5. The selectivity towards the formation of dinitrogen decreased as the loading increased, presumably because of the formation of larger polymeric species and V2O5 crystallites, below and above the critical loading level, respectively. For the reduction of NO by propane, titania supported vanadia aerogel catalysts are significantly more active, per mass of catalyst, and more selective towards N2 formation than conventionalV2O5TiO2 and V2O5Al2O3 aerogel catalysts, at vanadia loading levels below ca. 11 wt%.  相似文献   

3.
Pure and K-doped vanadia/titania prepared by different methods have been studied in order to elucidate the role of vanadia species (monomeric, polymeric, bulk) in catalytic toluene partial oxidation. The ratio of different vanadia species was controlled by treating the catalysts in diluted HNO3, which removes bulk vanadia and polymeric vanadia species, but not the monomeric ones, as was shown by FT-Raman spectroscopy and TPR in H2. Monolayer vanadia species (monomeric and polymeric) are responsible for the catalytic activity and selectivity to benzaldehyde and benzoic acid independently on the catalyst preparation method. Bulk V2O5 and TiO2 are considerably less active. Therefore, an increase of the vanadium concentration in the samples above the monolayer coverage results in a decrease of the specific rate in toluene oxidation due to the partial blockage of active monolayer species by bulk crystalline V2O5. Potassium diminishes the catalyst acidity resulting in a decrease of the total rate of toluene oxidation and suppression of deactivation. Deactivation due to coking is probably related to the Brønsted acid sites associated with the bridging oxygen in the polymeric species and bulk V2O5. Doping by K diminishes the amount of active monolayer vanadia leading to the formation of non-active K-doped monomeric vanadia species and KVO3.  相似文献   

4.
Alumina–silica mixed oxide, synthesized by the sol–gel technique, was used as a support for dispersing and stabilizing the active vanadia phase. The catalysts were characterized employing 51V and 1H solid-state MAS NMR, diffuse reflectance FT-IR, BET surface area measurements. The partial oxidation activities of the catalysts were tested using methanol oxidation as a model reaction. 51V solid-state NMR studies on the calcined catalysts showed the peaks corresponding to the presence of both tetrahedral and distorted octahedral vanadia species at low vanadia loadings and with an increase in V2O5 content, the 51V chemical shifts corresponding to amorphous V2O5 like phases were observed. DRIFTS studies of the catalysts indicated the vibrations corresponding tetrahedral vanadia species at low and medium loadings and at high V2O5 contents the vibrations corresponding V=O bonds of V2O5 agglomerates were observed. The V/Al–Si catalysts exhibited high selectivity for the dehydration product dimethyl ether in the methanol partial oxidation studies showing the predominance of the acidic nature of the alumina–silica support over the redox properties of the active vanadia phase.  相似文献   

5.
The application of different techniques (diffuse reflectance-UV–vis, 51V NMR, FT-IR of adsorbed pyridine and TPR-H2) in the characterization of vanadia supported on mesoporous Al2O3 catalysts shows that the nature of the vanadium species depends on the V-loading. At V-content lower than 15 wt.% of V-atoms (30% of the theoretical monolayer), vanadium is mainly in a tetrahedral environment. Higher V-contents in the catalyst leads to the formation of octahedral V5+ species and V2O5-like species. Both XRD and textural results indicate that the mesoporous structure of the support is mostly maintained after the vanadium incorporation, and therefore high surface areas were obtained on the final catalysts. Al2O3-suppported vanadia catalysts are active and selective in the oxidative dehydrogenation of ethane, although the catalytic behavior depends on the V-loading. High rates of formation of ethylene per unit mass of catalyst per unit time have also been observed as a consequence of the high dispersion of V-atoms on the surface of the support.  相似文献   

6.
The effect of tungsten and barium on the thermal stability of V2O5/TiO2 catalyst for NO reduction by NH3 was examined over a fixed bed flow reactor system. The activity of V2O5/sulfated TiO2 catalyst gradually decreased with respect to the thermal aging time at 600 °C. The addition of tungsten to the catalyst surface significantly enhanced the thermal stability of V2O5 catalyst supported on sulfated TiO2. On the basis of Raman and XRD measurements, the tungsten on the catalyst surface was identified as suppressing the progressive transformation of monomeric vanadyl species into crystalline V2O5 and of anatase into rutile phase of TiO2. However, the NO removal activity of V2O5/sulfated TiO2 catalyst including barium markedly decreased after a short aging time, 6 h at 600 °C. This may be due to the transformation of vanadium species to inactive V–O–Ba compound by the interaction with BaO which was formed by the decomposition of BaSO4 on the catalyst surface at high reaction temperature of 600 °C. The addition of SO2 to the feed gas stream could partly restore the NO removal activity of thermally aged V2O5/sulfated TiO2 catalyst containing barium.  相似文献   

7.
The reduction of nitrogen monoxide by propene on V2O5/ZrO2 doped with or without calcium has been studied by FTIR spectroscopy as well as by analysis of the reaction products. Considerable promoting effect of calcium doping on the reduction of nitrogen monoxide by propene was observed on the V2O5/ZrO2 catalysts. For the reaction of a mixture of NO+C3H6, carbonyl and carboxylate species were observed above 373 K, although nitrate species formed at room temperature on V2O5/ZrO2 doped with calcium. No bands due to a compound including both carbon and nitrogen atoms were observed. Thus, the redox mechanism, i.e. propene reduces the catalyst and nitrogen monoxide oxidizes the catalyst, is confirmed on V2O5/ZrO2 catalysts doped with or without calcium. The analysis of the V=O band in the region of 1100–900 cm−1 indicates that this promotion is mainly due to new V=O species formed by the addition of calcium onto the catalyst. This species is easily reproduced in comparison with the other V=O species on the surface in the reoxidation process of the catalyst.  相似文献   

8.
Reactivity of V2O5&z.sbnd;WO3TiO2 de-NOx catalysts by transient methods   总被引:1,自引:0,他引:1  
The reactivity of ternary V2O5&z.sbnd;WO3TiO2 de-NOxing catalysts with compositions similar to those of commercial catalysts (WO3 ca. 9% w/w, V2O5 < 2% w/w) is investigated by transient techniques (temperature programmed desorption, TPD; temperature programmed surface reaction, TPSR; and temperature programmed reaction, TPR). The results indicate that the reactivity of the ternary catalysts in the SCR reaction increases on increasing the vanadia loading, and that the ternary catalysts are more active than the corresponding binary vanadia-titania samples with the same V2O5 loading. Indeed the SCR reaction is monitored at lower temperatures and high NO conversions are also preserved at high temperatures. TPSR and TPR data show that at low temperatures the SCR reaction occurs via a redox mechanism that involves at first the participation of the catalyst lattice oxygen and then the reoxidation of the reduced sites by gas-phase oxygen. Based on TPSR and TPR data, the higher reactivity of the ternary catalysts has been related to their superior redox properties, in line with previous chemico-physical characterisation studies. The catalyst redox properties thus appear as a key-factor in controlling the reactivity of V2O5&z.sbnd;WO3TiO2 de-NOxing catalysts at low temperatures. The results also show that at high temperatures the surface acidity plays an important role in the adsorption and activation of ammonia.  相似文献   

9.
Nitric oxide and nitric dioxide compounds (NOx) present in stack gases from nitric acid plants are usually eliminated by selective catalytic reduction (SCR) with ammonia. In this process, small quantities of nitrous oxide (N2O) are produced. This undesirable molecule has a high greenhouse gas potential and a long lifetime in the atmosphere, where it can contribute to stratospheric ozone depletion. The influence of catalyst composition and some operating variables were evaluated in terms of N2O formation, using V2O5/TiO2 catalysts. High vanadia catalyst loading, nitric oxide inlet concentration and reaction temperature increase the generation of this undesirable compound. The results suggest that adsorbed ammonia not only reacts with NO via SCR, but also with small quantities of oxygen activated by the presence of NO. The mechanism proposed for N2O generation at low temperature is based on the formation of surface V–ON species which may be produced by the partial oxidation of dissociatively adsorbed ammonia species with NO + O2 (eventually NO2). When these active sites are in close proximity they can interact to form an N2O molecule. This mechanism seems to be affected by changes in the active site density produced by increasing the catalyst vanadia loading.  相似文献   

10.
Chunli Zhao  Israel E. Wachs   《Catalysis Today》2006,118(3-4):332-343
The vapor-phase selective oxidation of propylene (H2CCHCH3) to acrolein (H2CCHCHO) was investigated over supported V2O5/Nb2O5 catalysts. The catalysts were synthesized by incipient wetness impregnation of V-isopropoxide/isopropanol solutions and calcination at 450 °C. The catalytic active vanadia component was shown by in situ Raman spectroscopy to be 100% dispersed as surface VOx species on the Nb2O5 support in the sub-monolayer region (<8.4 V/nm2). Surface allyl species (H2CCHCH2*) were observed with in situ FT-IR to be the most abundant reaction intermediates. The acrolein formation kinetics and selectivity were strongly dependent on the surface VOx coverage. Two surface VOx sites were found to participate in the selective oxidation of propylene to acrolein. The reaction kinetics followed a Langmuir–Hinshelwood mechanism with first-order in propylene and half-order in O2 partial pressures. C3H6-TPSR spectroscopy studies also revealed that the lattice oxygen from the catalyst was not capable of selectively oxidizing propylene to acrolein and that the presence of gas phase molecular O2 was critical for maintaining the surface VOx species in the fully oxidized state. The catalytic active site for this selective oxidation reaction involves the bridging VONb support bond.  相似文献   

11.
To get the low temperature sulfur resistant V2O5/TiO2 catalysts quantum chemical calculation study was carried out. After selecting suitable promoters (Se, Sb, Cu, S, B, Bi, Pb and P), respective metal promoted V2O5/TiO2 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD) and Brunner Emmett Teller surface area (BET-SA). Se, Sb, Cu, S promoted V2O5/TiO2 catalysts showed high catalytic activity for NH3 selective catalytic reduction (NH3-SCR) of NOx carried at temperatures between 150 and 400 °C. The conversion efficiency followed in the order of Se > Sb > S > V2O5/TiO2 > Cu but Se was excluded because of its high vapor pressure. An optimal 2 wt% ‘Sb’ loading was found over V2O5/TiO2 for maximum NOx conversion, which also showed high resistance to SO2 in presence of water when compared to other metal promoters. In situ electrical conductivity measurement was carried out for Sb(2%)/V2O5/TiO2 and compared with commercial W(10%)V2O5/TiO2 catalyst. High electrical conductivity difference (ΔG) for Sb(2%)/V2O5/TiO2 catalyst with temperature was observed. SO2 deactivation experiments were carried out for Sb(2%)/V2O5/TiO2 and W(10%)/V2O5/TiO2 at a temperature of 230 °C for 90 h, resulted Sb(2%)/V2O5/TiO2 was efficient catalyst. BET-SA, X-ray photoelectron spectroscopy (XPS) and carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis of spent catalysts well proved the presence of high ammonium sulfate salts over W(10%)/V2O5/TiO2 than Sb(2%)/V2O5/TiO2 catalyst.  相似文献   

12.
In situ Raman spectroscopy was used for studying the ternary 2% CrO3–6% V2O5/TiO2 catalyst, for which a synergistic effect between vanadia and chromia leads to enhanced catalytic performance for the selective catalytic reduction (SCR) of NO with NH3. The structural properties of this catalyst were studied under NH3/NO/O2/N2/SO2/H2O atmospheres at temperatures up to 400 °C and major structural interactions between the surface chromia and vanadia species are observed. The effects of oxygen, ammonia, water vapor and sulfur dioxide presence on the in situ Raman spectra are presented and discussed.  相似文献   

13.
Alumina-, silica-, and titania-supported vanadium oxide systems with V2O5 loadings ranging from 3 to 12 wt.%, corresponding to 0.02–0.09 V/(Al,Si,Ti) atomic ratios, were prepared by atomic layer deposition (ALD) and compared with the corresponding impregnated catalysts. The surface acidic properties of the supports and catalysts were investigated using ammonia adsorption microcalorimetry to determine the number and strength of the surface acid sites. Deposition of V2O5 on alumina and titania supports gave rise to catalysts with lower amounts of acid sites than the respective supports, while for the samples prepared on silica, an increase of the number of acid sites was observed after V2O5 deposition. As a common trend, the surface acid strength was greater for the ALD catalysts than for the impregnated ones, suggesting a stronger interaction of the VO species with the support centers, which act as electron attractor centers creating Lewis-like vanadium species. Redox cycles were performed, involving temperature programmed reduction (TPR) analyses separated by an oxidation treatment (TPO). The results evidenced the good reversibility of the redox behavior of the vanadium centers in every case, while significant differences were observed when comparing the temperatures of reduction (Tmax). Lower Tmax values were observed for the better dispersed vanadia catalysts. After reduction, the V centers had a final formal average oxidation state corresponding to +3 or less (+2.5 to +2). The reactivity of the vanadia systems was examined by measuring their performance for the oxidation of o-xylene to phthalic anhydride. Activity tests indicated the superior selectivity of the V2O5 systems based on the more acidic supports (Al2O3 and TiO2). The nature of the support governed the activity, and the more concentrated catalysts gave rise to improved selectivity to phthalic anhydride.  相似文献   

14.
TiO2-SiO2 with various compositions prepared by the coprecipitation method and vanadia loaded on TiO2-SiO2 were investigated with respect to their physico-chemical characteristics and catalytic behavior in SCR of NO by NH3 and in the undesired oxidation of SO2 to SO3, using BET, XRD, XPS, NH3-TPD, acidity measurement by the titration method and activity test. TiO2-SiO2, compared with pure TiO2, exhibits a remarkably stronger acidity, a higher BET surface area, a lower crystallinity of anatase titania and results in allowing a good thermal stability and a higher vanadia dispersion on the support up to high loadings of 15 wt% V2O5. The SCR activity and N2 selectivity are found to be more excellent over vanadia loaded on TiO2-SiO2 with 10–20 mol% of SiO2 than over that on pure TiO2, and this is considered to be associated with highly dispersed vanadia on the supports and large amounts of NH3 adsorbed on the catalysts. With increasing SiO2 content, the remarkable activity decrease in the oxidation of SO2 to SO3, favorable for industrial SCR catalysts, was also observed, strongly depending on the existence of vanadium species of the oxidation state close to V4+ on TiO2-SiO2, while V5+ exists on TiO2, according to XPS. It is concluded that vanadia loaded on Ti-rich TiO2-SiO2 with low SiO2 content is suitable as SCR catalysts for sulfur-containing exhaust gases due to showing not only the excellent de-NOx activity but also the low SO2 oxidation performance.  相似文献   

15.
WO_3负载量对V_2O_5/WO_3-TiO_2催化剂脱硝性能的影响   总被引:1,自引:0,他引:1  
采用V_2O_5/WO_3-TiO_2作为脱硝催化剂,考察活性组分V_2O_5和助剂WO_3负载量对催化剂脱硝活性和抗硫抗水性能的影响。结果表明,3%V_2O_5/x WO_3-TiO_2催化剂(x=3%、4%、5%、6%、7%、8%、9%、10%)上NOx转化率随着WO_3负载量增加而升高,催化剂反应温度窗口不断拓宽。单独通水蒸汽及同时通SO2和水蒸汽对催化剂的毒害作用均较强,表明H2O和NH3的竞争吸附是催化剂抗硫抗水性能较差的重要原因。SO_2与H_2O和NH_3反应生成亚硫酸铵盐和硫酸铵盐,导致催化剂孔隙堵塞,催化活性降低。  相似文献   

16.
The catalytic behavior of the V-M/AC (M=W, Mo, Zr, and Sn) catalysts were studied for the NO reduction with ammonia at low temperatures, especially in the presence of SO2. The presence of the metal oxides does not increase the V2O5/AC activity but decreases it. Except V-Mo/AC, the other catalysts are promoted by SO2 at 250°C, especially for V-Sn/AC. However, the promoting effect of SO2 is gradually depressed by catalyst deactivation. Changes in catalyst preparation method can improve the catalyst stability in short-term but cannot completely prevent the catalyst from a long-term deactivation. Mechanisms of the promoting effect and the deactivation of V-Sn/AC catalyst by SO2 were studied using Fourier transform infrared spectroscopy (FT-IR) spectra and measurement of catalyst surface area and pore volume. The results showed that both the SO2 promotion and deactivation are associated with the formation of sulfate species on the catalyst surface. In the initial period of the selective catalytic reduction (SCR) reaction in the presence of SO2, the formed sulfate species provide new acid sites to enhance ammonia adsorption and thus the catalytic activity. However, as the SCR reaction proceeds, excess amount of sulfate species and then ammonium-sulfate salts are formed which is stabilized by the presence of tin oxide, resulting in gradual plugging of the pore structures and the catalyst deactivation.  相似文献   

17.
The hydrogenation of CO over an Rh vanadate (RhVO4) catalyst supported on SiO2 (RhVO4/SiO2) has been investigated after H2 reduction at 500°C, and the results are compared with those of vanadia-promoted (V2O5–Rh/SiO2) and unpromoted Rh/SiO2 catalysts. The mean size of Rh particles, which were dispersed by the decomposition of RhVO4 after the H2 reduction, was smaller (41 Å) than those (91–101 Å) of V2O5–Rh/SiO2 and Rh/SiO2 catalysts. The RhVO4/SiO2 catalyst showed higher activity and selectivity to C2 oxygenates than the unpromoted Rh/SiO2 catalyst after the H2 pretreatment. The CO conversion of the RhVO4/SiO2 catalyst was much higher than that of V2O5–Rh/SiO2 catalyst, and the yield of C2 oxygenates increased. We also found that the RhVO4/SiO2 catalyst can be regenerated by calcination or O2 treatment at high temperature after the reaction.  相似文献   

18.
Catalytic and in situ Fourier Transform Infrared (FTIR) spectroscopic studies were conducted to investigate the adsorption and oxidation of o- and p-chlorophenol over a 3.6 wt.% V2O5/TiO2 catalyst. At a space velocity of approximately 53,000 cm3 g−1 h−1, this catalyst was found to be active for the oxidation of o- and p-chlorophenol at temperatures as low as 200 °C, yielding CO2 and HCl as the main products. Trace amounts of higher molecular weight products were also detected at the reactor outlet indicating the operation of additional condensation, coupling and chlorination/dechlorination side reactions in parallel to the main complete oxidation scheme. The in situ FTIR studies revealed that different phenols adsorb on the V2O5/TiO2 catalyst through their hydroxyl group. Furthermore, the formation of similar surface species (i.e., maleates, acetates, formates and an aldehyde-type species) was observed. The results were compared with those of previous studies on the oxidation of m-dichlorobenzene (m-DCB) and benzene and suggest that a similar reaction mechanism is operating in all cases, although the relative kinetic significance of the different steps varies with the presence and the position of the hydroxyl and chlorine groups on the aromatic ring.  相似文献   

19.
We investigated the suppression of SO2 oxidation activity by vanadium oxide in Pt-based diesel oxidation catalyst using reaction experiments, temperature programmed desorption (TPD), infrared (IR) and X-ray photoelectron spectroscopy (XPS). There was no interaction between Pt and S indicated by the XPS results. SO2 was not adsorbed on Pt at room temperature indicated by the absence of peak arising from SO2 in SO2 TPD spectra. SO2 molecules were adsorbed on the hydroxyl groups of TiO2 and migrated to Pt particles to react with oxygen adsorbed on it. V2O5 decreased the adsorption of SO2 on TiO2 by the blockage of V2O5 on TiO2.  相似文献   

20.
The physico-chemical characteristics and the reactivity of sub-monolayer V2O5-WO3/TiO2 deNOx catalysts is investigated in this work by EPR, FT-IR and reactivity tests under transient conditions. EPR indicates that tetravalent vanadium ions both in magnetically isolated form and in clustered, magnetically interacting form are present over the TiO2 surface. The presence of tungsten oxide stabilizes the surface VIV and modifies the redox properties of V2O5/TiO2 samples. Ammonia adsorbs on the catalysts surface in the form of molecularly coordinated species and of ammonium ions. Upon heating, activation of ammonia via an amide species is apparent. V2O5-WO3/TiO2 catalysts exhibits higher activity than the binary V2O5/TiO2 and WO3/TiO2 reference sample. This is related to both higher redox properties and higher surface acidity of the ternary catalysts. Results suggest that the catalyst redox properties control the reactivity of the samples at low temperatures whereas the surface acidity plays an important role in the adsorption and activation of ammonia at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号