首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrated balloon ultrasound catheter prototype was designed to image from inside the balloon for real-time guidance during stent deployment. It was fabricated using a semicompliant balloon material (polyethylene) and a 20 MHz, 64-element circumferential ultrasound array. A commercial stent, nominally 4.4 mm in diameter and 12 mm in length, was used for a phantom study and placed along the length of the integrated balloon ultrasound catheter. A rubber phantom was created with an elastic modulus of 175 kPa with a 4.36 mm diameter lumen. Real-time balloon pressure measurements were recorded using a digital pressure sensor, and real-time radio-frequency (RF) data were captured as the balloon was inflated. The slope of the area-pressure ratio (APR) was compared to a reference measure of the balloon and stent expanded in water to determine a measure for optimal stent deployment. The results clearly indicate stent deployment at 11.1 atm using this metric. The APR slope could serve as quantitative feedback parameter for guiding stent deployment to reduce arterial injury and subsequent restenosis. After the stent deployment experiment, RF data were captured as the balloon catheter was moved along the length of the stent in pullback mode to confirm successful stent deployment. Ultimately, an integrated balloon ultrasound catheter could serve as a single catheter intervention device by providing real-time intravascular ultrasound (IVUS) imaging and quantitative feedback during stent deployment.  相似文献   

2.
A recent study has shown the feasibility of tissue harmonic imaging (THI) using an intravascular ultrasound (IVUS) transducer. This correspondence describes the design, fabrication, and characterization of a THI-optimized piezoelectric transducer with oval aperture of 0.75 mm by 1 mm. The transducer operated at 20 MHz and 40 MHz, and was comprised of a single piezoelectric layer with additional passive layers. The Krimholtz-Leedom-Matthaei (KLM) model was used to iteratively find optimal material properties of the different layers. The transducer characterization showed -6 dB fractional bandwidths of 30% and 25%, and two-way insertion losses of -20 dB and -36 dB, respectively.  相似文献   

3.
We report an integrated ultrasound (US) and optical coherence tomography (OCT) probe and system for intravascular imaging. The dual-function probe is based on a 50 MHz focused ring US transducer, with a centric hole for mounting OCT probe. The coaxial US and light beams are steered by a 45° mirror to enable coregistered US∕OCT imaging simultaneously. Lateral resolution of US is improved due to focused ultrasonic beam. Mirror effects on US were investigated and invitro imaging of a rabbit aorta has been carried out. The combined US-OCT system demonstrated high resolution in visualizing superficial arterial structures while retaining deep penetration of ultrasonic imaging.  相似文献   

4.
In this paper, intravascular ultrasound (IVUS) images acquired with a 64-element array transducer using a multistatic acquisition scheme are presented. The images are reconstructed from a collection of pulse-echo measurements using a synthetic aperture array imaging technique. The main limitations of IVUS imaging are a poor lateral resolution and elevated grating lobes caused by the imaging geometry. We propose a Synthetic Aperture Focusing Technique (SAFT), which uses a limited number of A-scan signals. The focusing process, which is performed in the Fourier domain, requires far less computation time than conventional delay-and-sum methods. Two different reconstruction kernel functions have been derived and are compared for the processing of experimental data  相似文献   

5.
The present study characterizes the mechanical properties of polyvinyl alcohol (PVA) cryogel in order to show its utility for intravascular elastography. PVA cryogel becomes harder with an increasing number of freeze-thaw cycles, and Young's modulus and Poisson's ratio are measured for seven samples. Mechanical tests were performed on cylindrical samples with a pressure column and on a hollow cylinder with the calculation of an intravascular elastogram. An image of the Young's modulus was obtained from the elastogram using cylinder geometry properties. Results show the mechanical similitude of PVA cryogel with the biological tissues present in arteries. A good agreement between Young's modulus obtained from pressure column and from elastogram was also observed.  相似文献   

6.
Blood noise reduction in intravascular ultrasound imaging   总被引:2,自引:0,他引:2  
Scattering from red blood cells (blood noise) increases significantly as the ultrasound frequency is increased above 10 MHz. This reduces the contrast between the vessel wall and the lumen in intravascular ultrasound imaging which makes it difficult to localize the vessel wall and plaque. A blood noise filter based on beam tilting and digital lateral low pass filtering is described. Beam tilting introduces a Doppler shift from blood which results in a frequency separation of the vessel wall signal and the blood noise. The performance of the filter is investigated by simulations and by in vitro experiments. The filter is found to be effective for blood velocities exceeding approximately 50 cm s-1 at a 20 MHz ultrasound frequency with a beam tilt angle of 10 degrees and a frame rate of 15 f.p.s. By increasing the system frequency to 40 MHz, increase the beam tilt angle to 15 degrees and reduce the frame rate to 10 f.p.s., the filter is effective for blood velocities below 10 cm s-1  相似文献   

7.
Previously, we presented a method of real-time arterial color flow imaging using an intravascular ultrasound (IVUS) imaging system, where real-time RF A-scans were processed with an FIR (finite-impulse response) filter bank to estimate relative blood speed. Although qualitative flow measurements are clinically valuable, realizing the full potential of blood flow imaging requires quantitative flow speed and volume measurements in real time. Unfortunately, the rate of RF echo-to-echo decorrelation is not directly related to scatterer speed in a side-looking IVUS system because the elevational extent of the imaging slice varies with range. Consequently, flow imaging methods using any type of decorrelation processing to estimate blood speed without accounting for spatial variation of the radiation pattern will have estimation errors that prohibit accurate comparison of speed estimates from different depths. The FIR filter bank approach measures the rate of change of the ultrasound signal by estimating the slow-time spectrum of RF echoes. A filter bank of M bandpass filters is applied in parallel to estimate M components of the slow-time DFT (discrete Fourier transform). The relationship between the slow-time spectrum, aperture diffraction pattern, and scatterer speed is derived for a simplified target. Because the ultimate goal of this work is to make quantitative speed measurements, we present a method to map slow time spectral characteristics to a quantitative estimate. Results of the speed estimator are shown for a simulated circumferential catheter array insonifying blood moving uniformly past the array (i.e., plug flow) and blood moving with a parabolic profile (i.e., laminar flow)  相似文献   

8.
We have developed a dual-modality biomedical imaging probe utilizing intravascular ultrasound (IVUS) and optical coherence tomography (OCT). It consists of an OCT probe, a miniature ultrasonic transducer and a fixed mirror. The mirror was mounted at the head of the hybrid probe 45° relative to the light and the ultrasound beams to change their propagation directions. The probe was designed to be able to cover a larger area in blood vessel by IVUS and then visualize a specific point at a much finer image resolution using OCT. To demonstrate both its feasibility and potential clinical applications, we used this ultrasound-guide OCT probe to image a rabbit aorta in vitro. The results offer convincing evidence that the complementary natures of these two modalities may yield beneficial results that could not have otherwise been obtained.  相似文献   

9.
Ultrasound strain imaging is becoming increasingly popular as a way to measure stiffness variation in soft tissue. Almost all techniques involve the estimation of a field of relative displacements between measurements of tissue undergoing different deformations. These estimates are often high resolution, but some form of smoothing is required to increase the precision, either by direct filtering or as part of the gradient estimation process. Such methods generate uniform resolution images, but strain quality typically varies considerably within each image, hence a trade-off is necessary between increasing precision in the low-quality regions and reducing resolution in the high-quality regions. We introduce a smoothing technique, developed from the nonparametric regression literature, which can avoid this trade-off by generating uniform precision images. In such an image, high resolution is retained in areas of high strain quality but sacrificed for the sake of increased precision in low-quality areas. We contrast the algorithm with other methods on simulated, phantom, and clinical data, for both 2-D and 3-D strain imaging. We also show how the technique can be efficiently implemented at real-time rates with realistic parameters on modest hardware. Uniform precision nonparametric regression promises to be a useful tool in ultrasound strain imaging.  相似文献   

10.
In elastography, an erroneous strain estimate is obtained when the radial strain and the probing ultrasound beam are not properly aligned: the "strain projection artifact". In practice, an angle between the strain and the ultrasound beam will be present in most of the cases due to inhomogeneities or nonuniform compression. In this study, a theoretical function describing the strain projection artifact is derived as a function of the angle between the radial strain and the ultrasound beam. Two main factors for an angle between strain and ultrasound beam in intravascular elastographic experiments are eccentricity and tilt of the transducer. The theoretical functions describing these errors are corroborated with strain estimates from an experiment with a circular, homogeneous gel-based vessel phantom. Comparison between the theoretical functions and the experimental results reveals that the strain projection artifact is well described by the theoretical findings. As a result, the experimental data can be corrected for this artifact. The corrected elastograms reveal that correct strain estimates are obtained when the eccentricity of the intravascular catheter is less than 63%. An "off-the-wall" device may be required to advance intravascular elastography to in vivo implementation.  相似文献   

11.
李霞  陈益良  苏敏 《声学技术》2024,43(1):142-146
血管内超声(Intravascular Ultrasound,IVUS)成像技术可以精确评估血管腔口径、血管壁形态和其他相关血流和血管特性,在冠状动脉疾病的诊断、治疗指导和治疗后的评估中发挥着重要作用。文章设计并制备了一种用于血管内超声成像的高频超声换能器,并对换能器的电学和声学性能进行测试和表征。结果表明,所制备IVUS换能器的中心频率为38.9 MHz,-6 dB相对带宽为56.6%,在谐振频率42.3 MHz处的电阻抗为22.6Ω,在反谐振频率48.2MHz处的电阻抗为56.5Ω,有效机电耦合系数为0.48。使用该换能器进行线仿体成像实验的结果显示,换能器的纵向分辨率为54μm,横向分辨率为209μm。最后,将文中制备的超声换能器与国外同类型换能器进行比较,结果表明,该换能器的性能良好,能够满足血管内超声临床检测需求,未来有望能够突破技术瓶颈,实现国产替代。  相似文献   

12.
In ultrasound strain and elasticity imaging, an accurate and cost-effective sub-pixel displacement estimator is required because strain/elasticity imaging quality relies on the displacement SNR, which can often be higher if more computational resources are provided. In this paper, we introduce an autocorrelation-based method to cost-effectively improve subpixel displacement estimation quality. To quantitatively evaluate the performance of the autocorrelation method, simulated and tissue-mimicking phantom experiments were performed. The computational cost of the autocorrelation method is also discussed. The results of our study suggest the autocorrelation method can be used for a real-time elasticity imaging system.  相似文献   

13.
Intravascular ultrasound (IVUS) imaging systems using circumferential arrays mounted on cardiac catheter tips fire beams orthogonal to the principal axis of the catheter. The system produces high resolution cross-sectional images but must be guided by conventional angioscopy. A real-time forward-viewing array, integrated into the same catheter, could greatly reduce radiation exposure by decreasing angiographic guidance. Unfortunately, the mounting requirement of a catheter guide wire prohibits a full-disk imaging aperture. Given only an annulus of array elements, prior theoretical investigations have only considered a circular ring of point transceivers and focusing strategies using all elements in the highly dense array, both impractical assumptions. In this paper, we consider a practical array geometry and signal processing architecture for a forward-viewing IVUS system. Our specific design uses a total of 210 transceiver firings with synthetic reconstruction for a given 3-D image frame. Simulation results demonstrate this design can achieve side-lobes under -40 dB for on-axis situations and under -30 dB for steering to the edge of a 60/spl deg/ cone.  相似文献   

14.
Motion compensation for intravascular ultrasound palpography   总被引:1,自引:0,他引:1  
Rupture of vulnerable plaques in coronary arteries is the major cause of acute coronary syndromes. Most vulnerable plaques consist of a thin fibrous cap covering an atheromous core. These plaques can be identified using intravascular ultrasound (IVUS) palpography, which measures radial strain by cross-correlating RF signals at different intraluminal pressures. Multiple strain images (i.e., partial palpograms) are averaged per heart cycle to produce a more robust compounded palpogram. However, catheter motion due to cardiac activity causes misalignment of the RF signals and thus of the partial palpograms, resulting in less valid strain estimates. To compensate for in-plane catheter rotation and translation, we devised four methods based on block matching. The global rotation block matching (GRBM) and contour mapping (CMAP) methods measure catheter rotation, and local block matching (LBM) and catheter rotation and translation (CRT) estimate displacements of local tissue regions. These methods were applied to nine in vivo pullback acquisitions, made with a 20 MHz phased-array transducer. We found that all these methods significantly increase the number of valid strain estimates in the partial and compounded palpograms (P < 0.008). The best method, LBM, attained an average increase of 17% and 15%, respectively. Implementation of this method should improve the information coming from IVUS palpography, leading to better vulnerable plaque detection.  相似文献   

15.
Tissue elasticity can be estimated from displacement and strain images acquired under controlled deformation. We extend this approach for coronary arteries, deformed and imaged by an integrated angioplasty balloon and ultrasonic imaging probe. Because the lumen cross section of a severely occluded artery is not circular, we have also developed a technique to perform all motion computations in the reference frame of the lumen's geometric center. This coordinate system is independent of the imaging catheter and consequently referencing to this frame removes artifacts associated with probe motion within the balloon during deformation. Displacements and strains estimated by phase-sensitive correlation-based speckle tracking were used to distinguish arterial plaques in simulated coronary arteries of differing elastic moduli: hard, soft, and homogenous. We have also applied these methods to images of a homogeneous gelatin phantom collected with the integrated probe. The maximum phantom displacement was about 40 pm, and the maximum radial normal strain was about 4% (absolute value). The spatial dependence of these quantities shows good agreement with theoretically predicted values  相似文献   

16.
Evaluation of internal displacement and strain distributions in tissue under externally applied forces is a necessary step in elasticity imaging. To obtain a quantitative image of the elastic modulus, strain and displacement fields must be measured with reasonable accuracy and inverted based on an accurate theoretical model of soft tissue mechanics. In this paper, results of measured internal strain and displacement fields from gel-based phantoms are compared with theoretical predictions of a linear elastic model. In addition, some aspects of elasticity reconstruction based on measured displacement and strain fields are discussed  相似文献   

17.
An end-to-end system for optical image acquisition and data processing for ice cores has been developed for the United States National Ice Core Laboratory (NICL). The components of this system include highly integrated, automated methods for image capture in the cold-room environment and subsequent analysis by scientists. These components seamlessly manage the various aspects of physical scanning, metadata capture, image processing tests for data quality assurance, database integration and file management, processing of raw data to standard products, data distribution, and image processing and annotation tools for end-users in the ice core science community. The system has been tested operationally on cores retrieved from the West Antarctic Ice Sheet Divide drilling project during the core processing lines at NICL in 2006 and 2007.  相似文献   

18.
Forward-viewing ring arrays can enable new applications in intravascular and intracardiac ultrasound. This work presents compelling, full-synthetic, phased-array volumetric images from a forward-viewing capacitive micromachined ultrasonic transducer (CMUT) ring array wire bonded to a custom integrated circuit front end. The CMUT ring array has a diameter of 2 mm and 64 elements each 100 microm x 100 microm in size. In conventional mode, echo signals received from a plane reflector at 5 mm had 70% fractional bandwidth around a center frequency of 8.3 MHz. In collapse mode, 69% fractional bandwidth is measured around 19 MHz. Measured signal-to-noise ratio (SNR) of the echo averaged 16 times was 29 dB for conventional operation and 35 dB for collapse mode. B-scans were generated of a target consisting of steel wires 0.3 mm in diameter to determine resolution performance. The 6 dB axial and lateral resolutions for the B-scan of the wire target are 189 microm and 0.112 radians for 8 MHz, and 78 microm and 0.051 radians for 19 MHz. A reduced firing set suitable for real-time, intravascular applications was generated and shown to produce acceptable images. Rendered three-dimensional (3-D) images of a Palmaz-Schatz stent also are shown, demonstrating that the imaging quality is sufficient for practical applications.  相似文献   

19.
Atrial fibrillation (AF) affects 1% of the population and results in a cost of 2.8 billion dollars from hospitalizations alone. Treatments that electrically isolate portions of the atria are clinically effective in curing AF. However, such minimally invasive catheter treatments face difficulties in mechanically positioning the catheter tip and visualizing the anatomy of the region. We propose a noncontact, intracardiac transducer that can ablate tissue and provide rudimentary imaging to guide therapy. Our design consists of a high-power, 20 mm by 2 mm, 128-element, transducer array placed on the side of 7-French catheter. The transducer will be used in imaging mode to locate the atrial wall; then, by focusing at that location, a lesion can be formed. Imaging of previously formed lesions could potentially guide placement of subsequent lesions. Successive rotations of the catheter will potentially enable a contiguous circular lesion to be created around the pulmonary vein. The challenge of intracardiac-sized transducers is achieving high intensities (300-5000 W/cm2) needed to raise the temperature of the tissue above 43 degrees C. In this paper, we demonstrate the feasibility of an intracardiac-sized transducer for treatment of atrial fibrillation. In simulations and proof-of-concept experiments, we show a 37 degrees C temperature rise in the lesion location and demonstrate the possibility of lesion imaging.  相似文献   

20.
State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号