首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Deep drying of inherent moisture from subbituminous coal produces a dried product which is friable and very reactive to oxygen in air. The major problems in handling dried coal, which are unique to deep drying of low-rank coal, are: (1) avoidance of spontaneous combustion, (2) prevention of moisture reabsorption, and (3) control of dust. Atlantic Richfield has developed, and successfully demonstrated, technologies which solve all three problems. However, this paper will be confined to the spontaneous combustion problem

Low-temperature 'oxidation may result in spontaneous combustion' of the coal during storage or transit. The increased reactivity to low-temperature oxidation of dried coal is due to two factors: (1) the reduction in moisture content, and (2) the increase in temperature. A laboratory technique was developed to measure the coal reactivity to low-temperature oxidation at temperatures near ambient. Laboratory data was then used to develop a pseudo-first order kinetics model for dried subbituminous coal as a function of temperature and moisture content. The influence of particle size was also determined

A one-dimensional spontaneous heating model was formulated to evaluate the effects of wind velocity, coal pile porosity, thermal conductivity of crushed coal, and geometry of coal piles on the dried coal's tendency to spontaneous combustion. This model was validated against two large-scale spontaneous heating tests. Each test consumed about 800 pounds of dried coal.

Based on a selected combination of three deactivation methods and predictions of the computer model, a special product treatment procedure was developed and successfully demonstrated in pilot plant tests in 1983. Dried coal stockpiles (about 100 tons per pile) were monitored for four months under severe weather conditions with no evidence of either moisture reabsorption or spontaneous combustion.  相似文献   

2.
Imatran Voima Oy together with Technical Research Centre of Finland has carried out experimental research on fuel drying at high pressure steam atmosphere. The pilot dryer is a pressurized flash dryer. Since its commissioning in 1991, the dryer has been used for drying experiments of peat and wood biomass for about 1000 h. The dryer operates at 23 bar pressure steam atmosphere with capacity of abt. 1000 kg/h of wet feedstock.

The developed high pressure steam dryer is planned to be used in a power plant process suitable for wet fuels as peat, biomass, and brown coal. The process is based on the connection of a pressurized fuel dryer, a pressurized gasifier, and a gas turbine. The integration of the high pressure steam dryer to the process increases the power generating efficiency of the process essentially.  相似文献   

3.
The scale-up of contact dryers is still based on experimental drying curves. In order to keep the effort to a minimum the drying curve is determined using a small laboratory or pilot dryer of similar geometry to the production dryer.

This paper introduces a new scale -up method for contact dryers. The new scale-up method is based on the assumption that heat transfer is the controlling mechanism. The scale-up method is derived from the material balance, the energy balance, the kinetic equation of heat transfer and thermodynamic equilibrium. The scale up method can be used to convert the drying time required to achieve a certain residual moisture content from the laboratory or pilot dryer to the production dryer and/or different drying conditions.

The scale-up method was verified by drying test with four different products in conical mixer dryers of 1, 60, 250, 1000 I volume. Two products were free flowing and two products were non free flowing in the wet state. The products can be considered non-hygroscopic in the moisture range investigated.  相似文献   

4.
An analytical model for the process is developed. The thermal diffusivity of the drying slabs is assumed infinite and the moisture diffusivity constant during the entire drying process.

With specified initial and boundary conditions, the mathematical model yields a two-part solution for the diffusion equation. The first part is valid for the initial drying during which the surface moisture content exceeds the value of fiber saturation. This part of the solution is used until the surface moisture content drops to the fiber saturation value. The moisture profile at the end of this period is used as the initial condition for the second period of drying which takes place under hygroscopic conditions.

Two simplifying assumptions are adapted for the hygroscopic region: 1. The dependence between the surface temperature and the moisture content is linear. 2. Constant (average) absorption heat is used during this second drying period.

For both parts of the solution, the surface moisture gradient is proportional to the local temperature difference between the drying air and the slab surface. This temperature difference can be expressed by means of a water mass balance equation for the part of the dryer between the slab in-feed and the point considered and by using the thermodynamic properties of the humid air.  相似文献   

5.
Moisture diffusivity is the most crucial property in drying calculations. Literature data are scarce due to the variation of both experimental measurement techniques and methods of analysis. The effect of using different methods of analysis on the same experimental drying data is examined in this work. Detailed and simplified mathematical models, incorporating moisture diffusivity as model parameter, are applied. It is proved, that significant differences in the calculated values of moisture diffusivity result when different models are used, and probably these differences explain the variation in literature data. Thus, the adoption of a standardised methodology will be of great importance in moisture diffusivity evaluation.

The above findings resulted from the application of four alternative models on the drying data of three common food materials, potato, carrot and apple. A typical pilot plant scale dryer with controlled drying air conditions was used for the experiments. The moisture content dependence of the diffusion coefficient was proved significant at the last drying stage, while the temperature dependence followed the well known Arrhenius relation. The effects of considering external mass transfer and volume shrinkage during drying, were also investigated.  相似文献   

6.
This paper explores the influence of temperature and pressure on drying kinetics of 2-(3-benzoylphenil propionic acid) ketoprofen, in a vacuum dryer on laboratory scale, Experimentally determined relations between moisture content and drying rate vs time, were approximated with an exponential model. Model parameters were correlated with drying conditions (temperature, pressure) and defined by functions of their potentions.

From an energy balance of the process, a mathematical model for simulating dependence of sample temperature vs drying time, and moisture content of material, has been developed.

Simulation of the drying kinetics and sample temperature, by use of those functional dependencies shows good agreement with experimental results.  相似文献   

7.
The conventional drying of the coated film with organic solvent on continuous sheet materials is usually performed in open or one pass drying system using air as the drying medium. The concentration of evaporated organic solvent in the drying system must be low enough to prevent explosion and large volume of off gas from dryer to solvent recovery system is required, resulting in poor heat economy for all the plant

To improve the heat economy of the plant it had been proposed to use a closed cycle drying system, where an inert gas, e.g. nitrogen, is used as the drying medium. High concentration of the organic solvent in the recycle gas mixture may then be used, which results in smaller volume of recycle gas and possibility of applying an inexpensive solvent recovery system of dehumidification. This investigation includes two important problems to realize the closed cycle drying

(1)Measurement of solvent (toluene) evaporation rate from coated film in the gas mixture of toluene andnitrogen over a wide range of toluene/nitrogen ratios (0-1.0) and drying temperature using bench scaleapparatus

(2)Development of a contactless sealing method, using an inert gas, for closed cycle drying of continuoussheet materials. The results of preliminary tests demonstrate its feasibility.  相似文献   

8.
This paper deals with the heat treatment of alfalfa chops during the high temperature dehydration process. It outlines the dryer characteristics, difficulties and potential errors in measuring temperatures in the dryer, computation techniques, the relationships between moisture and temperature during drying, and the potential effect of dehydration on the destruction of the insect Hessian Fly due to elevated temperatures.

From the analysis based on an existing computer model for dehydration of alfalfa chops, and the available field data, it is shown that the dried chops will attain a temperature of 90°C or higher when the input temperatures are between 500°C and 800°C. These conditions apply to the drying of wet alfalfa (moisture content more than 55 percent wet basis). The plant material loses a large portion of its moisture in the first few seconds in the dryer. The rapid release of moisture may cause the rupture or detachment of particles such as eggs, larva, pupa, and insects from the plant material. These small particles are exposed to an intense heat and rapid dehydration.  相似文献   

9.
In general, wood containing wet pockets is difficult to dry and to ensure uniformity of moisture content at the end of the drying process. Large variations of final moisture content and severe case hardening are common problems associated with the drying of wet wood. In order to devise optimal strategies for drying wood containing wet pockets, it is necessary to understand its complex moisture movement mechanisms and therefore predict drying times and final moisture content. Sub-alpine fir dimension lumber was used in this research because of its inherent issues related to wet pockets.

A two-dimensional mathematical drying model for wood containing wet pockets was developed. An effective diffusion coefficient (Deff) was utilized in the model and heat and mass transfer equations were solved using a control volume approach. The difficulties involved in the simulation of the drying process of wet pocket lumber are due to the differences in moisture content and physical properties between wet and normal wood. Thus, an adjustable Deff based on the moisture content (for both below and above fiber saturation point) was used during the simulation.

Four drying runs involving green unsorted sub-alpine fir lumber were carried out in a 3-ft laboratory kiln and in an 8-ft pilot kiln. The results of the simulations were in agreement with the results obtained through the drying experiments.  相似文献   

10.
W. Blumberg 《Drying Technology》1994,12(6):1471-1484
When regarding the atmospheric contact drying of granular beds wetted with a liquid mixture, both the drying rate and the selectivity of the process, i.e. the change of moisture composition, are of interest. The batch drying of a free flowing ceramic substance, wetted with a 2-propanol-water mixture, is investigated in a rotary dryer with heated wall and air flow.

The theoretical analysis is based on physical models for heat and mass transfer, moisture migration and particle transport, which are presented in examples.

The experimental and theoretical results show that higher selectivities can be achieved by reducing the particle size because of the lower liquid-phase mass-transfer resistance. An increase of the rotational speed leads to a higher drying rate with slightly decreased selectivity if the particles are sufficiently small, since contact heat transfer is enhanced.  相似文献   

11.
High temperature particulate medium conduction grain drying is a very promising technique. However, lack of basic drying characteristic information has resulted in unsuccessful attempts to develop an efficient, economical, continuous flow dryer.

In this study, the effects of initial grain moisture content, initial medium temperature, medium particle size, medium to grain mass ratio, and contact time on the drying of shelled corn immersed in hot sand are evaluated.

Moisture losses ranged between 0.2 and 5.2 percentage points (wb).  相似文献   

12.
Germination and moisture content loss data were collected of maize with a moisture content ranging from 15 to 32% (w.b.), an air temperature from 40 to 75°C, and an exposure time from 0.5 to 180 minutes.

A germination-retention model was developed based on the normally distributed death-rate theory (NDD). The NDD model was combined with a concurrent-flow (CCF) dryer model, and tested against viability data of maize dried in a commercial two-stage CCF dryer. Acceptable agreement between the predicted and experimental viabilities was obtained.

The effect of the CCF dryer design, and of several operating parameters, on the loss of maize-seed viability was analyzed. Simulation with the NDD-CCF dryer model shows that high quality seed can be produced by drying at air temperatures well above 100°C.  相似文献   

13.
Wan Ramli  Wan Daud 《Drying Technology》2007,25(7):1229-1235
Plug flow fluidized bed cross-flow dryers have been used in drying of particulate solids such as paddy and other grains for many years. However, simulation of the performance of any particular design of the dryer has always been problematic due to the inadequate overall empirical models used that are too inflexible and too specific to the particular design. In addition, previous theoretical models of the plug flow fluidized bed cross-flow dryer did not model the gas cross flow properly and had difficulty in modeling the moving solid bed. A new steady-state cross-flow model of the dryer that models the gas cross-flow is proposed. The profiles for the solids and air moisture contents and temperatures were found to be dependent on the gas-solid flow ratio, G/F, the specific heat demand, CPY(TI - TA)/(YE - YI), the total number of a transfer units, NT = Gε/KφaSL and the specific drying load, (XI - XP)/ (YE - YI). The model was validated by comparing the simulated data with experimental data that were obtained by drying paddy in a plug flow fluidized bed cross-flow dryer pilot plant. The model was found to estimate very well the solids moisture content and temperature, the gas moisture content and temperature profiles, and the driving force profile.  相似文献   

14.
A nonequilibrium distributed parameter model for rotary drying and cooling processes described by a set of partial differitial equations with nonlinear algebraic constraints is developed in this work. These equations arise from the multi-phase heat and mass balances on a typical rotary dryer. A computational algorithm is devekped by employing a polynonial approximation ( orthogonal collocation) with a glotal splinc technique leading to a differential-algebraic equation ( DAE) system. The numerical solution is carried out by using a standard DAE solver.

The two- phase-flow heat transfer coelficient is computed by introducing a correction factor to the commonly accepted correlations. Since interaction between the falling particles are considered in the correction factor,the results are more reliable than those computed by assuming that heat transfer between a single falling particle and the drying air is unaffected by other particles. The heat transfer computations can be further justified via a study on the analogies between heat and mass transfer.

The general model devloped in this work is mathematically more ritorous yet more flexible that the lumped parameter models established by one of the authors (Douglas et al., (1993)). The three major assumptions of an equilibrium operation, perfect mixing and constant drying raic, are removed in the distributed parameter model.

The simulation results are compared with the operational data from an industrial sugar dryer and predictions from earlier models. The model and algorithm successfully predict the steady state behaviour of rotary dryers and collers. The generalized model can be applied to fertilizer drying processes in which the assumption of constant drying rate is no longer valid and the existing dynamic models are not applicable.  相似文献   

15.
In coating and gravure printing, an impinging jet nozzle with high thermal efficiency for drying of coated film was developed.

Trial production 0f 40 kinds of nozzle enables to develop a high-performance impinging jet nozzle with heat transfer coefficient 1.5 times larger than that of current slit nozzle, through measurement of heat transfer coefficient, visualizations of air flow and heat transfer, and measuremenu of jet velocity and turbulence distribution. The purpose of the trial production was to expand a range of high heat transfer and promote turbulence compared with the current nozzle.

Paying attention to mass transfer within gravure ink coated film, drying characteristic of the film was analyzed by numerical solution of a set of equations governing the drying process in which concentration dependencies 0f the diffusion coefficient and the equilibrium vapor pressure were considered.

Applying these analyses. an industrial scale dryer with excellent drying efficiency has finally been developed.  相似文献   

16.
《Drying Technology》2008,26(4):476-486
The objective of this work was the experimental and theoretical study of sawdust drying, in batch and continuous experiences, using a pulsed fluidized bed dryer.

In the batch experiences, a 23 factorial design was used to determine the kinetics of drying, the critical moisture content, and the effective coefficients of both diffusivity and heat transfer, all of them as a function of the velocity and temperature of the air, the speed of turning of the slotted plate that generates the air pulses in the dryer, using sawdust with 65% moisture in each run.

In the continuous operation, a 23 factorial design was used to study the effect of the solid flow and the velocity and temperature of the air on both the product moisture and the distribution of residence times. In order to determine these last ones, digital image processing was used, utilizing sawdust colored by a solution of methylene blue as tracer.

The statistically significant factors were the velocity and the temperature of the heating air, for both the continuous and batch operations. Although the speed of turn of the slotted plate was not significant, it was observed that the air pulses increased the movement of particles, facilitating its fluidization, especially at the beginning of drying.

The heat transfer coefficients were adjusted according to the equation Nu = 0.0014 Rep1.52, whose standard deviation of fit is 0.145.

The period of decreasing rate was adjusted to several diffusivity models, giving the best fit the simplified variable diffusivity model (SVDM). The curve of distribution of residence times was adjusted using the model of tanks in series, with values between 2.6 and 5 tanks.  相似文献   

17.
A model for a pneumatic conveying dryer is presented. Although the main emphasis is put on superheated steam drying of wood chips, it can be used for other porous materials as well

The model includes a comprehensive two-dimensional model for the drying of single wood chips which accounts for the main physical mechanisms occurring in wood during drying. The external drying conditions in a pneumatic conveying dryer were calculated by applying the mass, heat and momentum equations for each incremental step in dryer length. A plug flow assumption was made for the dryer model and the single particle and dryer models were solved in an iterative manner. The non-spherical nature of wood chips were accounted for by measuring the drag and heat transfer coefficients

Model calculations illustrate the complex interactions between steam, particles and walls which occur in a flash dryer. The drying rate varies in a very complex manner through the dryer. The internal resistance to mass transfer becomes very important in The drying of less permeable wood species such as spruce. Two effects were observed as the particle size was increased: firstly the heat transfer rate decreased, and secondly the residence time increased. To some extent, these effects compensate for each other, however, the net result is that larger chips have a higher final moisture content.  相似文献   

18.
The concentration dependency of diffusion coefficients of hygroscopic materials can usually only be calculated by cumbersome experimental techniques.

Taking the diffusion rate in the fictious steady state with the same mean moisture concentration as in the regular regime of the drying process of a spherical hygroscopic particle (which means the drying period not influenced by initial moisture distributions) into account, a simple method is proposed to estimate the dependency of diffusion coefficients on the moisture concentration for hygroscopic materials from drying rate curves of the single particle.  相似文献   

19.
The objectives of this work are to analyze the drying performance of conical-cylindrical spouted bed (CSB) dryers for three different grains (rice, corn and wheat), and to compare the drying efficiency of CSB dryers with that of spout-fluid bed (SFB) dryers. A PC-program was developed for: (I) -optimization of the CSB dryer dimensions; (2) -simulation of drying grains in the optimized CSB dryer (including start-up period); and, (3) -analysis of the drying performance in a similar SFB dryer.

The liquid diffusion model is used to describe the falling rate drying period. Semi-empirical correlations available in the literature as well as information obtained in the authors' laboratory for spouted and spout-fluidized beds of grains are used to describe the aerodynamic parameters.

The results are presented in terms of the size of the dryer, energy consumption, air handling requirement, drying characteristics etc for different drying conditions. The drying effeciency in a CSB is compared with that in a similar SFB for different grain feed rates and drying temperatures.  相似文献   

20.
Vibro-fluidized bed dryers are being extensively used in the industry to dry granular particles of wide particle size distribution. For drying applications of limited air inlet temperature and hard to dry granules--high diffusion resistance of moisture inside the qranules--baffles are normally provided in these dryers to increase the residence time of particles. The residence time distribution of granules in vibro-fluidized bed dryers is of high importance to successfully model such dryers. There has been some studies reported in the literature for average residence time of granules in vibro-fluidized beds without baffles, but there has been no work reported for average residence time in vibro-fluidized beds with baffles and residence time distribution for beds with or without baffles. Experimental runs were carried out in this study in the 0.93 m2 (10 ft2 ) pilot plant vibro-fluidized bed dryer with baffles to determine the residence time distribution of dry granules and granule height profile through the length of the dryer.

Among all the dryer operating variables considered in this study, vibration amplitude and baffle spacing were identified as most significant. Values of the average residence time and particle diffusivity were obtained for the entire range of the expected operation of the pilot-scale or commercial scale dryers. These values of average residence time and particle diffusivity, along with the appropriate drying rate (kinetic) data, enable full modeling of vibro-fluidized bed dryers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号