首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current competitive industrial context requires more flexible, intelligent and compact product lifecycles, especially in the product development process where several lifecycle issues have to be considered, so as to deliver lifecycle oriented products. This paper describes the application of a novel product relationships management approach, in the context of product lifecycle management (PLM), enabling concurrent product design and assembly sequence planning. Previous work has provided a foundation through a theoretical framework, enhanced by the paradigm of product relational design and management. This statement therefore highlights the concurrent and proactive aspect of assembly oriented design vision. Central to this approach is the establishment and implementation of a complex and multiple viewpoints of product development addressing various stakeholders design and assembly planning points of view. By establishing such comprehensive relationships and identifying related relationships among several lifecycle phases, it is then possible to undertake the product design and assembly phases concurrently. Specifically, the proposed work and its application enable the management of product relationship information at the interface of product-process data management techniques. Based on the theory, models and techniques such as described in previous work, the implementation of a new hub application called PEGASUS is then described. Also based on web service technology, PEGASUS can be considered as a mediator application and/or an enabler for PLM that externalises product relationships and enables the control of information flow with internal regulation procedures. The feasibility of the approach is justified and the associated benefits are reported with a mechanical assembly as a case study.  相似文献   

2.
The paper describes a novel framework for an assembly-oriented design (AOD) approach as a new functional product lifecycle management (PLM) strategy, by considering product design and assembly sequence planning phases concurrently. Integration issues of product life cycle into the product development process have received much attention over the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an assembly context knowledge to support life-oriented product development process, particularly for product structuring. The proposed framework highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a catalytic-converter and diesel particulate filter sub-system, belonging to an exhaust system from an industrial automotive supplier, is introduced to illustrate the efficiency of the proposed AOD methodology.  相似文献   

3.
4.
5.
Intelligent products are an undeniable asset for efficient product lifecycle management (PLM), providing ways to capture events related to physical objects at various locations and times. Today and more than ever before, PLM tools and systems must be built upon standards for enhancing interoperability among all product stakeholders and developing tools independent of specific vendors, applications, and operating systems. Based on this observation, this paper develops strategies to improve “information sustainability” in PLM environments using standardized communication interfaces defined by a recent standard proposal named quantum lifecycle management (QLM) messaging standards. More concretely, data synchronization models based upon QLM standards are developed to enable the synchronization of product-related information among various systems, networks, and organizations involved throughout the product lifecycle. Our proposals are implemented and assessed based on two distinct platforms defined in the healthcare and home automation sectors.  相似文献   

6.
This paper introduces a novel modelling approach to geometric skeleton computation enabling concurrent product engineering and assembly sequence planning. Current engineering vision has recently moved towards new modelling and management paradigms to maintain competitive edges all along the product lifecycle. Consistent with concurrent engineering and design for X stakes, this recent shift promotes cross-X and knowledge-intensive philosophies in the product development process, principally focused on lifecycle engineering.The main objective of this research is to integrate assembly process engineering information and knowledge in the early phases of the product development process in a top-down and proactive manner, in order to provide a geometric skeleton-based assembly context for designers. The definition of the product and its related assembly sequence requires both the enhancement and the entire understanding of product relationships between the various product components, and its related assembly rationale. As a consequence, this new modelling approach highlights the need to integrate various stakeholders’ viewpoints involved in the beginning of the product lifecycle. In such a context, earlier work has achieved the early generation of an optimal assembly sequence in the product development process, before the product geometry is completely defined. As a result, previous research has made possible to control and bind the product modelling phase through an assembly oriented product structure.The aim of the proposed approach is to compute and define a geometric skeleton model based on product relational information and the early-defined assembly sequence. The proposed approach–called SKeLeton geometry-based Assembly Context Definition (SKL-ACD)–enables the control of the product modelling phase by introducing skeleton entities consistent with product relationships and assembly sequence planning information. A prototype application within a CAD tool has been developed for aiding geometric skeleton computation and generation. Lastly, an industrial case study is introduced to highlight the feasibility and the relevance of the proposed modelling approach.  相似文献   

7.
Ontology-based data integration and decision support for product e-Design   总被引:1,自引:0,他引:1  
Currently, computer-based support tools are widely used to facilitate the design process and have the potential to reduce design time, decrease product cost and enhance product quality. Although there are promising information systems to manage product lifecycle and product-related data, including product data management (PDM) and product lifecycle management (PLM), significant limitations still exist, where information required to make decisions may not be available, may be lacking consistency, and may not be expressed in a general way for sharing between systems. Moreover, there remains little support for decision making that considers multiple complex technical and economical criteria, relations, and objectives in product design. To address these problems, this paper presents a framework for an ontology-based data integration and decision support environment for e-Design. The framework can guide designers in the design process, can make recommendations, and can provide decision support for parameter adjustments.  相似文献   

8.
Product Lifecycle Management (PLM) has been identified as a key concept within manufacturing industries for improving product quality, time-to-market and costs. Previous works on this field are focused on processes, functions and information models, and those aimed at putting more intelligence on products are related to specific parts of the product lifecycle (e.g. supply chain management, shop floor control). Therefore, there is a lack of a holistic approach to PLM, putting more intelligence on products through the complete lifecycle. In this paper, a PLM framework supported by a proactive approach based on intelligent agents is proposed. The developed model aims at being a first step toward a reference framework for PLM, and complements past works on both product information and business process models (BPM), by putting proactivity on product's behavior. An example of an instantiation of the reference framework is presented as a case study.  相似文献   

9.
This paper presents a modeling framework for product lifecycle information. Although being widely used in enterprises’ virtual product data management, Product Lifecycle Management (PLM) systems are unable to manage the modeling and simulation aspects of virtual products. To reinforce the sharing and management of the product lifecycle information, especially the simulation data, a product’s four-dimensional (4D) view model (PLIM) is established, which includes geometry view, task view, virtual prototype system view and lifecycle view. To provide efficient and effective simulation information, the prototype system view is then studied in detail. Finally, to validate the feasibility of the modeling framework, a prototype system is developed based on an application example, with the demonstration of 4D product lifecycle information model (PLIM).  相似文献   

10.
11.
Product lifecycle management (PLM) systems are widely used in the manufacturing industry. A core feature of such systems is to provide support for versioning of product data. As workflow functionality is increasingly used in PLM systems, the possibility emerges that the versioning transitions for product objects as encapsulated in process models do not comply with the valid version control policies mandated in the objects’ actual lifecycles. In this paper we propose a solution to tackle the (non-)compliance issues between processes and object version control policies. We formally define the notion of compliance between these two artifacts in product lifecycle management and then develop a compliance checking method which employs a well-established workflow analysis technique. This forms the basis of a tool which offers automated support to the proposed approach. By applying the approach to a collection of real-life specifications in a main PLM system, we demonstrate the practical applicability of our solution to the field.  相似文献   

12.
13.
Product development processes comprise highly creative and knowledge-intensive tasks that involve extensive information exchange and communication among geographically distributed teams. Due to the geographical and institutional separation between the different systems involved in the product lifecycle, product knowledge sharing is becoming a key issue in the information systems of extended enterprises. This paper addresses the issue and challenges of product knowledge traceability during the product development. The aim of this research effort is to enhance the sharing and use of product knowledge acquired during the development process using traceability information.A standardized approach is proposed to trace and share product knowledge and key constructs to support traceability during the product development process are identified and formalized. This research effort is based on the premise that an important step towards achieving product knowledge sharing is providing traceability across various product knowledge elements that are used in product development phases, i.e. design and manufacturing. Two disjointed but complementary case studies illustrating the benefit of traceability are presented. The potential role of traceability is described, first to support the decision making process during engineering change management (ECM), and second to support product-oriented modelling for knowledge sharing and exchanging to meet the quality requirements. The proposed approach has been implemented using the MEGA Suite tool and applied to each of the case studies and could be integrated to PLM systems currently in use.  相似文献   

14.
Current product lifecycle management (PLM) systems properly support the development of a product from the embodiment design stage to detail design and manufacturing phases; on the contrary, marginal support is provided to the earliest stages of conceptual design. Besides, the front end of product development is supported by an emerging technology, namely computer-aided innovation systems (CAI), which nevertheless are still poorly integrated with the following phases of the design process. The paper presents an original computer-based approach aimed at supporting embodiment design phases, which results very efficient for improving the interoperability of CAI and PLM systems and thus at extending the domain of application of these tools. The potential of the approach proposed by the authors is clarified through three exemplary case studies.  相似文献   

15.
Product lifecycle management (PLM) aims to seamlessly manage all products and information and knowledge generated throughout the product lifecycle for achieving business competitiveness. Conventionally, PLM is implemented based on standalone and centralized systems provided by software vendors. The information of PLM is hardly to be integrated and shared among the cooperating parties. It is difficult to meet the requirements of the openness, interoperability and decentralization of the Industry 4.0 era. To address these challenges, this paper proposed an industrial blockchain-based PLM framework to facilitate the data exchange and service sharing in the product lifecycle. Firstly, we proposed the concept of industrial blockchain as the use of blockchain technology in the industry with the integration of IoT, M2M, and efficient consensus algorithms. It provided an open but secured information storage and exchange platform for the multiple stakeholders to achieve the openness, interoperability and decentralization in era of industry 4.0. Secondly, we proposed and developed customized blockchain information service to fulfill the connection between a single node with the blockchain network. As a middleware, it can not only process the multi-source and heterogeneous data from varied stages in the product lifecycle, but also broadcast the processed data to the blockchain network. Moreover, smart contract is used to automate the alert services in the product lifecycles. Finally, we illustrated the blockchain-based application between the cooperating partners in four emerging product lifecycle stages, including co-design and co-creation, quick and accurate tracking and tracing, proactive maintenance, and regulated recycling. A simulation experiment demonstrated the effectiveness and efficiency of the proposed framework. The results showed that the proposed framework is scalable and efficient, and hence it is feasible to be adopted in industry. With the successful development of the proposed platform, it is promising to provide an effective PLM for improving interoperability and cooperation between stakeholders in the entire product lifecycle.  相似文献   

16.
17.
通过分析产品生命周期管理(PLM)的思想并结合制造企业现状和未来发展趋势,设计了面向PLM的产品设计资源集成系统方案。在设计时分别建立实体、功能和流程的模型,并在此基础上建立协同BOM模型、系统集成模型以支持产品导向设计管理,分割流程模型以支持设计各阶段协同管理。通过AOP设计方法建立与模型对应的系统体系架构,实现系统的柔性和持续化发展。  相似文献   

18.
Assembly features in modeling and planning   总被引:4,自引:0,他引:4  
In recent years, features have been introduced in modeling and planning for manufacturing of parts. Such features combine geometric and functional information. Here it is shown that the feature concept is also useful in assembly modeling and planning. For modeling and planning of both single parts and assemblies, an integrated object-oriented product model is introduced. For specific assembly-related information, assembly features are used. Handling features contain information for handling components, connection features information on connections between components. A prototype modeling environment has been developed. The product model has been successfully verified within several analyses and planning modules, in particular stability analyses, grip planning, motion planning and assembly sequence planning. Altogether, feature-based product models for assembly can considerably help in both assembly modeling and planning, on the one hand by integrating single-part and assembly modeling, and on the other hand by integrating modeling and planning.  相似文献   

19.
In the current “mass customization” scenario, product complexity is increasing significantly due to the necessity to answer as quickly and effectively as possible to many different costumer needs but maintaining costs under control. In this scenario, requirements management becomes a fundamental features for the entire product lifecycle, as enterprises need to have a complete and clear idea of the market for succeeding in developing and supporting the right and innovative product. Moreover, considering that product lifecycle is characterized by many “trade-off”, so that product features are often negotiated in order to fulfil to conflicting requirements, it is important to support the “traceability” of the entire lifecycle “negotiation” process. For this reason, PLM platform has to provide suitable methodologies and tools able to efficiently support the design and management of large set of complex requirements. Requirements Management Tools (RMt) embedded in PLM solutions help keeping specifications consistent, up-to-date, and accessible. At present, there are different possible solutions, but a shared PLM integrated seems not to be available. In order to fill this gap, this paper has developed an user-based strategy, based on Kano methodology, so on “user satisfaction”, in order to define a structured set of guidelines to support the design of the features of an integrated PLM requirement management tool.  相似文献   

20.
PLM (Product Lifecycle Management) is an information management system that can integrate data, processes, business systems and staff in a company, in general. PLM allows managing efficiently and economically the information that all these elements generate from the initial idea to design, manufacture, maintenance and elimination phases of the product lifecycle. PLM has to include processes and tools to assure the quality of the final products. This way, it is difficult for PLM experts (from aeronautical or automation organizations, among others) to find an environment that suggests which is the best PLM solution that copes with their necessities. A number of PLM solutions are available for this purpose, but experts require a suitable mechanism to select the most appropriate one for the specific context of each organization. For this purpose, this paper presents a quality model, based on QuEF (Quality Evaluation Framework), that aims at helping organizations choose the most useful PLM solution for their particular environments. This model supports both static and dynamic aspects that may be customized for any kind of organization and taken as reference model. Particularly, our approach has been validated in the context of large enterprises in the aeronautical industry within a real R&D project carried out between our research group and Airbus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号