首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The persistence of sebum after low-water-temperature washing can contribute to malodor and microbial growth during subsequent use; thus, this work focuses on improved sebum removal. The detergency of sebum at various hydrophobic–lipophilic deviation (HLD) values was performed using 0.1 w/v% C12-13-8PO-SO4Na and C8-4PO-1EO-SO4Na at 1:1 molar ratio. The detergency of synthetic sebum on 87/13 polyester/spandex was relatively poor (70% removal) at HLD = 0. Various additives (heptanol, dipropylene glycol n-butyl ether, decyltrimethyl ammonium bromide or sodium benzoate) were explored and it was found that none of them could facilitate sebum removal on the 87/13 polyester/spandex surface. On the other hand, adding low molecular weight primary amines (ethylene diamine, or monoethanolamine [MEA]) in the surfactant system without salt showed sebum removal of 70%–80% depending on the amine molecule. Adding MEA as a detergency additive with salt appeared to achieve good detergency (>80% removal) at all studied HLD numbers between −1.0 and 1.1 and the maximum detergency (approximately 90% removal) was observed at the optimum formulation (HLD = 0). The formulation pH with added MEA decreased from 11 to roughly 9. Detergency performance with added MEA was not dependent on pH within the studied basic conditions. The principal cold water sebum removal mechanism was found to be detachment of solid sebum fractions, dispersed in the detergent bath or floating on the bath surface.  相似文献   

2.
3.
A comprehensive one-dimensional heterogeneous reactor model is developed to simulate the performance of fixed-bed Fischer–Tropsch reactors for hydrocarbon production. The detailed mechanistic kinetics is combined into the reactor model along with considering the fact that the catalyst pores are filled with liquid wax under realistic conditions. The equilibrium between the gases in the bulk and the wax in the catalyst pores is correlated by using a modified SRK equation of state (MSRK EOS). The model is solved by using Gear method to integrate the reactor model with the embedded pellet model discretized by orthogonal collocation on finite elements. The validity of the reactor model is tested against the measured data from different-scale demonstration processes. Satisfactory agreements between model predictions and experiment results are obtained. Detailed numerical simulations are performed to investigate the effect of major process parameters on the reaction behavior of fixed-bed FTS systems with recycle operation.  相似文献   

4.
Fragrances in consumer products are essential for appeal and market success. However, creating optimal stable formulas are especially challenging due to the polar nature of many fragrance ingredients. This perspective discusses how fragrances are currently dealt with within the industry, current surfactant and solvent models, and the barriers that today's industrial practice that prevent advancement to modeling and simulation. Recommendations for chemical suppliers, fragrance houses, and formulators are made regarding the implementation of the Hydrophilic-Lipophilic Difference with Net Average Curvature (HLD-NAC) model, which is the most comprehensive model for fragranced aqueous consumer products.  相似文献   

5.
《Catalysis Reviews》2013,55(3-4):255-318
A critical review of the kinetics and selectivity of the Fischer–Tropsch synthesis (FTS) is given. The focus is on reaction mechanisms and kinetics of the water–gas shift and Fischer–Tropsch (FT) reactions. New developments in the product selectivity as well as the overall kinetics are reviewed. It is concluded that the development of rate equations for the FTS should be based on realistic mechanistic schemes. Qualitatively, there is agreement that the product distribution is affected by the occurrence of secondary reactions (hydrogenation, isomerization, reinsertion, and hydrogenolysis). At high CO and H2O pressures, the most important secondary reaction is readsorption of olefins, resulting in initiation of chain growth processes. Secondary hydrogenation of α-olefins may occur and depends on the catalytic system and the process conditions. The rates of the secondary reactions increase exponentially with chain length. Much controversy exists about whether these chain-length dependencies stem from differences in physisorption, solubility, or diffusivity. Preferential physisorption of longer hydrocarbons and increase of the solubility with chain length influences the product distribution and results in a decreasing olefin-to-paraffin ratio with increasing chain length. Process development and reactor design should be based on reliable kinetic expressions and detailed selectivity models.  相似文献   

6.
The primary objective of this review was to illustrate the significance of ceria–zirconia (CZ) mixed oxides as catalysts and catalyst supports as employed for a wide variety of catalytic applications both in the liquid and gaseous phases. In particular, we were interested in bringing together the recent literature pertaining to these mixed oxides with catalysis perspective. The most prominent application of CZ mixed oxides is in three-way catalysis (TWC) as oxygen storage and release material for several years by replacing cerium dioxide as it shows better efficiency and a high thermal stability. Doping with zirconium oxide, as it is alone a non-reducible oxide, makes the CZ mixed oxide a highly reactive, thermally stable, and more reducible with elevated oxygen storage capacity (OSC) that are important for TWC applications. Apart from the TWC use, the CZ mixed oxides have a huge number of applications, as a direct component or a support, ranging from water–gas shift reaction, reforming of hydrocarbons, dehydration of alcohols, CO2 utilization, catalytic combustion of pollutants, fine chemicals production, photocatalysis, and so on. All these applications are mainly dependent on three parameters of the mixed oxides, namely, OSC or redox nature, acid–base properties, and crystalline phases. Besides, most of the applications are influenced by the physical properties such as specific surface area, pore volume, pore diameter, crystallite size, and so on. In this review, many details pertaining to the synthesis of these mixed oxides by various conventional and non-conventional methods, their characterization by several techniques, and their application for various reactions of energy and environmental significance, as reported in the literature, are assessed.  相似文献   

7.
Macro-scale delamination and micro-scale fiber–matrix debonding events may notably affect the mechanical performance of fibrous composite elements. This article presents a two-dimensional finite-element (FE)-based formulation of interface of a small but finite thickness relying on the so-called linear elastic-brittle interface model (LEBIM) to be applied for simulation of an adhesive interface debonding and fiber–matrix decohesion failures. This modeling strategy is implemented in the commercial FE package ABAQUS by means of the user-defined subroutine UMAT. The practicability of the developed interface model is assessed through the comparison of the computational results with experimental data and with previous boundary element method (BEM) analyses using the LEBIM formulation. Specifically, LEBIM results for the interlaminar fracture toughness test showed an excellent agreement with experimental results (adhesive saw-tooth post-peak response was captured). Besides, studies of several micro-mechanical fiber–matrix configurations showed that fiber–matrix debonding events are the predominant failure mechanisms for moderate transverse loading values. The developed tool will certainly contribute to elucidate several open aspects regarding the interface crack behavior in fiber-reinforced composite materials.  相似文献   

8.
A generalized model for the dynamic simulation of distillation columns is presented. The model allows the solution of a wide variety of problems, from open- closed-loop responses of single (and multiple) columns to operability studies (of feed changeover and start-up operations) and column instability studies (effect of plate hydraulics during transient operations). Results are given for single columns (including industrial) as well as multiple columns for different types of operations. The problems include thermodynamically close to ideal systems to highly nonideal systems. Efficient and robust numerical integrators are used to obtain reliable solutions even for difficult discontinuous operations.  相似文献   

9.
A new conceptual model is developed for ASR formation based on geochemical principles tied to aqueous speciation, silica solubility, kinetically controlled mineral dissolution, and diffusion. ASR development is driven largely by pH and silica gradients that establish geochemical microenvironments between paste and aggregate, with gradients the strongest within the aggregate adjacent to the paste boundary (i.e., where ASR initially forms). Super-saturation of magadiite and okenite (crystalline ASR surrogates) occurs in the zone defined by gradients in pH, dissolved silica, Na+, and Ca2 +. This model provides a thermodynamic rather than kinetic explanation of why quartz generally behaves differently from amorphous silica: quartz solubility does not produce sufficiently high concentrations of H4SiO4 to super-saturate magadiite, whereas amorphous silica does. The model also explains why pozzolans do not generate ASR: their fine-grained character precludes formation of chemical gradients. Finally, these gradients have interesting implications beyond the development of ASR, creating unique biogeochemical environments.  相似文献   

10.
Poly(ester amide)s have emerged in the last years as an important family of biodegradable synthetic polymers. These polymers present both ester and amide linkages in their structure and they gather in the same entity the good degradability of polyesters with the good thermo-mechanical properties of polyamides. Particularly, poly(ester amide)s containing α-amino acids have risen as important materials in the biomedical field. The presence of the α-amino acid contributes to better cell–polymer interactions, allows the introduction of pendant reactive groups, and enhances the overall biodegradability of the polymers.  相似文献   

11.
Diamond–carbon nanocomposites (DCN) containing diamond and graphitic particles, both a few nanometers in size, were studied as the material for field electron emission. Diamond–carbon mass ratio and grain size were varied to optimize field emission properties. The stable and uniform electron emission was observed at fields E=10 V μm−1 with a negligible hysteresis of IV curves. Treatment in microwave hydrogen plasma was found to reduce the threshold field for emission owing to preferential etching of carbon component and surface relief sharpening. Ultrathin chemical vapour deposition diamond films can be easily grown on DCN due to the very high nucleation density inherent to this composite.  相似文献   

12.
A noncytotoxic film was developed in this work with asymmetric biphasic properties (hydrophilic/hydrophobic) that allow for gas exchange. Among its many biomedical applications, it could be applied as a wound dressing material where the absorption of exuded fluids and control of water loss is required simultaneously. Thin meshes were developed modifying one face of poly(lactic acid) (PLA) electrospun mats with polyvinyl alcohol (PVA) using a simple photografting methodology. The contact angle of the modified face of the film was 44° while that of the other face was the original value of 122°. The chemical modification was covalent, as confirmed by X-ray photoelectron spectroscopy, stable over time and resistant to successive washing steps. Cytotoxic assays with fibroblast cells showed that PVA photo-grafted onto PLA meshes present a high cell viability percentage. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47369.  相似文献   

13.
In this work, a new activity coefficient model was deduced for the correlation of solid–liquid equilibrium(SLE) in electrolyte solutions. The new excess Gibbs energy equation for SLE contains two parts: the single electrolyte item and the mixed electrolyte item. Then a new hypothesis for the reference state of activity coefficients was proposed in the work. Literature data for single electrolyte solution and mixed electrolyte solution systems,with temperature spanning from 273.15 to 373.15 K, were successfully correlated using the developed model.  相似文献   

14.
Unified nonlinear model is proposed for the prediction of consecutive solid–liquid filtration and expression at the constant pressure. This model is based on the Darcy–Terzaghi filtration-consolidation equations modified to consider power-law pressure dependence of the specific cake resistance, and transforming Darcy law to the linear form. The model considers nonuniform structure of compressible filter cakes obtained by filtration and following expression. The profiles of local compressive pressure and local cake characteristics are simulated and compared for different moderately and highly compressible filter cakes (H.K. kaolin, CaCO3, silica, activated sludge) based on the analytical and numerical solutions of the model. It is shown that the behavior of solid–liquid expression depends from the initial structure of compressed materials. Consolidation ratio U of the filter cakes with initially nonuniform structure formed by filtration differs from that of semi-solid materials with initially uniform structure. Different methods of determination of consolidation coefficient are analyzed and compared for nonuniformly structured filter cakes.  相似文献   

15.
The present work deals with the study of the nanofiltration process for textile dye wastewater treatment. Effects of feed pressure, dye concentration, and feed flow rate on dye rejection and recovery for the spiral wound nanofiltration module were studied. The permeate characteristics were predicted by using the Spiegler–Kedem (SK)-based model. A finite difference numerical technique is used to discretize the transport equations and an optimization technique was used for estimation of unknown parameters (B, σ, ka, and kb) in the SK-based model. The model and the estimated parameter values were validated with experimental results for the spiral wound nanofiltration (NF) membrane module.  相似文献   

16.
Fluid flow through stationary or moving particle beds is a common process in industrial units. The two-phase hydrodynamics strongly influences the performances and characteristics of reactors and contactors in general, but the possibility to model comprehensively the details of the two-phase field of motion still lacks. Computational methods and multi-scale modeling are capable of providing essential information at the microscopic scale. In the present paper, recently published data on the fluid–particle interaction obtained at the sub-particle scale are used to propose a semi-empirical model for the calculation of the fluid–particle interaction, named the basis of computer simulations of fluid–solid flows. The proposed approach starts from flow through monodisperse particle beds and leads to a general expression valid over a very wide range of Reynolds’ number and porosity and, most notably, accounts for polydispersion in a consistent and general way. Available actual drag force data from lattice-Boltzmann simulations for mono- and bi-disperse systems are fitted by a physically consistent and computationally efficient model, obtaining a very good agreement over a broad range of conditions. The resulting model is validated both against lattice-Boltzmann simulations involving ten different species and against experimental measurements in real two-component beds fluidized by a liquid exhibiting the layer inversion phenomenon. The model is shown to predict well the correct values under a significant variability of operating conditions. Finally a discussion of the application of the model in the context of numerical simulations is presented.  相似文献   

17.
The unidirectional-laminated Cf/SiC–Al composites were prepared by using precursor infiltration and pyrolysis (PIP) and vacuum pressure infiltration processes. Bulk density and open porosity of as-prepared Cf/SiC–Al composites were characterized which showed a large number of pores in the unidirectional-laminated carbon fiber preform were filled with SiC and Aluminum alloy matrix. The uniaxial tensile tests were conducted to study the mechanical properties. The fracture surface and cross-section of tensile specimens were characterized to clarify the failure mechanism. The results showed that under the action of load, the propagation of microcracks in matrix led to interface debonding, fiber fracture and pull-out. According to the stress-displacement behavior and analysis of damage process, the prediction formulas of the linear proportional limit stress value and the tensile strength value were proposed. A bilinear constitutive model was established based on the assumption of the damage process which well characterized constitutive response of the composites.  相似文献   

18.
This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column,which is highly required for design and optimization of the periodic flow processes for industrial applications.In this regard,a comprehensive evaluation on the energy consumption in case of a pulsed flow for three different chemical systems is conducted and besides the influence of pulsation intensity,the effect of geometrical parameters including the plate spacing and the plate free area is investigated as well.Moreover,the concept ofcharacteristic velocity models at flooding points is evaluated with respect to the variation of pressure drop along the column at different operational conditions.  相似文献   

19.
Abstract

In this study, the compressive behaviour of carbon fibre reinforced plastic quasi-isotropic laminates and sandwich panels with carbon fibre reinforced plastic face sheets and syntactic foam core has been investigated. Experimentally determined open hole strengths have been compared with theoretical predictions obtained by applying a linear cohesive zone model. The unnotched compressive strength has been experimentally determined, and the in-plane fracture toughness has been analytically predicted as input parameters of the model. Buckling phenomena occurred on some specimens, and they have been taken into account. Evaluation of macroscopic failure modes in compression tests on unnotched specimens led to a better understanding on the advantages of the analytical model and on the possibility of applying the model to sandwich structures. The experimental results were in good agreement with the analytical prediction by the Budiansky–Soutis–Fleck cohesive zone model, and the difference between theoretical and experimental open hole strengths of Syncore sandwich panels was <9%.  相似文献   

20.
《Ceramics International》2015,41(4):5429-5438
This paper reports the facile synthesis, characterization and applications of Sb2O3–ZnO nanospindles. The nanospindles were synthesized by facile diethanolammine assisted hydrothermal process and characterized in detail in terms of their morphological, structural, compositional and optical properties. The detailed characterizations revealed that the prepared nanoellipsoids are well-crystalline, grown in high density and possessing good optical properties. Further, the as-synthesized Sb2O3–ZnO nanospindles were found to be an efficient photocatalyst for the degradation of methylene blue (MB) dye under UV light. Sb2O3–ZnO nanospindles were also used as an efficient electron mediator to fabricate a robust, highly sensitive and reproducible chemical sensor for the detection of thiourea in aqueous medium. The fabricated chemical sensor possesses high sensitivity of 6.54 µA mmol L−1 cm−2. The sensing calibration plot was found to be linear (R2=0.91423) over the large concentration range from 1.56 mmol L−1 to 100 mmol L−1. The obtained results confirmed that the Sb2O3–ZnO nanospindles may hold great potential for the removal of organic pollutants and for monitoring of thiourea in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号