首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Inflammation is important for the initiation and progression of breast cancer. We have previously reported that in monocytes, estrogen regulates TLR4/NFκB-mediated inflammation via the interaction of the Erα isoform ERα36 with GPER1. We therefore investigated whether a similar mechanism is present in breast cancer epithelial cells, and the effect of ERα36 expression on the classic 66 kD ERα isoform (ERα66) functions. We report that estrogen inhibits LPS-induced NFκB activity and the expression of downstream molecules TNFα and IL-6. In the absence of ERα66, ERα36 and GPER1 are both indispensable for this effect. In the presence of ERα66, ERα36 or GPER1 knock-down partially inhibits NFκB-mediated inflammation. In both cases, ERα36 overexpression enhances the inhibitory effect of estrogen on inflammation. We also verify that ERα36 and GPER1 physically interact, especially after LPS treatment, and that GPER1 interacts directly with NFκB. When both ERα66 and ERα36 are expressed, the latter acts as an inhibitor of ERα66 via its binding to estrogen response elements. We also report that the activation of ERα36 leads to the inhibition of breast cancer cell proliferation. Our data support that ERα36 is an inhibitory estrogen receptor that, in collaboration with GPER1, inhibits NFκB-mediated inflammation and ERα66 actions in breast cancer cells.  相似文献   

2.
3.
4.
5.
6.
Breast cancer prevention is a major challenge worldwide. During the last few years, efforts have been made to identify molecular breast tissue factors that could be linked to an increased risk of developing the disease in healthy women. In this concern, steroid hormones and their receptors are key players since they are deeply involved in the growth, development and lifetime changes of the mammary gland and play a crucial role in breast cancer development and progression. In particular, androgens, by binding their own receptor, seem to exert a dichotomous effect, as they reduce cell proliferation in estrogen receptor α positive (ERα+) breast cancers while promoting tumour growth in the ERα negative ones. Despite this intricate role in cancer, very little is known about the impact of androgen receptor (AR)-mediated signalling on normal breast tissue and its correlation to breast cancer risk factors. Through an accurate collection of experimental and epidemiological studies, this review aims to elucidate whether androgens might influence the susceptibility for breast cancer. Moreover, the possibility to exploit the AR as a useful marker to predict the disease will be also evaluated.  相似文献   

7.
17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer.  相似文献   

8.
9.
10.
11.
12.
Estrogen receptor beta (ERβ) plays a critical role in granulosa cell (GC) functions. The existence of four human ERβ splice isoforms in the ovary suggests their differential implication in 17β-estradiol (E2) actions on GC apoptosis causing follicular atresia. In this study, we investigated whether E2 can regulate ERβ isoforms expression to fine tune its apoptotic activities in human GC. For this purpose, we measured by RT-qPCR the expression of ERβ isoforms in primary culture of human granulosa cells (hGCs) collected from patients undergoing in vitro fertilization, before and after E2 exposure. Besides, we assessed the potential role of ERβ isoforms on cell growth and apoptosis after their overexpression in a human GC line (HGrC1 cells). We confirmed that ERβ1, ERβ2, ERβ4, and ERβ5 isoform mRNAs were predominant over that of ERα in hGCs, and found that E2 selectively regulates mRNA levels of ERβ4 and ERβ5 isoforms in these cells. In addition, we demonstrated that overexpression of ERβ1 and ERβ4 in HGrC1 cells increased cell apoptosis by 225% while ERβ5 or ERβ2 had no effect. Altogether, our study revealed that E2 may influence GC fate by specifically regulating the relative abundance of ERβ isoforms mRNA to modulate the balance between pro-apoptotic and non-apoptotic ERβ isoforms.  相似文献   

13.
While estrogen receptor alpha (ERα) is known to be important for bone development and homeostasis, its exact function during osteoblast differentiation remains unclear. Conditional deletion of ERα during specific stages of osteoblast differentiation revealed different bone phenotypes, which were also shown to be sex-dependent. Since hypertrophic chondrocytes can transdifferentiate into osteoblasts and substantially contribute to long-bone development, we aimed to investigate the effects of ERα deletion in both osteoblast and chondrocytes on bone development and structure. Therefore, we generated mice in which the ERα gene was inactivated via a Runx2-driven cyclic recombinase (ERαfl/fl; Runx2Cre). We analyzed the bones of 3-month-old ERαfl/fl; Runx2Cre mice by biomechanical testing, micro-computed tomography, and cellular parameters by histology. Male ERαfl/fl; Runx2Cre mice displayed a significantly increased cortical bone mass and flexural rigidity of the femurs compared to age-matched controls with no active Cre-transgene (ERαfl/fl). By contrast, female ERαfl/fl; Runx2Cre mice exhibited significant trabecular bone loss, whereas in cortical bone periosteal and endosteal diameters were reduced. Our results indicate that the ERα in osteoblast progenitors and hypertrophic chondrocytes differentially contributes to bone mass regulation in male and female mice and improves our understanding of ERα signaling in bone cells in vivo.  相似文献   

14.
Lipedema is a painful fat disorder that affects ~11% of the female population. It is characterized by bilateral, disproportionate accumulation of subcutaneous adipose tissue predominantly in the lower body. The onset of lipedema pathophysiology is thought to occur during periods of hormonal fluctuation, such as puberty, pregnancy, or menopause. Although the identification and characterization of lipedema have improved, the underlying disease etiology remains to be elucidated. Estrogen, a key regulator of adipocyte lipid and glucose metabolism, and female-associated body fat distribution are postulated to play a contributory role in the pathophysiology of lipedema. Dysregulation of adipose tissue accumulation via estrogen signaling likely occurs by two mechanisms: (1). altered adipocyte estrogen receptor distribution (ERα/ERß ratio) and subsequent metabolic signaling and/or (2). increased release of adipocyte-produced steroidogenic enzymes leading to increased paracrine estrogen release. These alterations could result in increased activation of peroxisome proliferator-activated receptor γ (PPARγ), free fatty acid entry into adipocytes, glucose uptake, and angiogenesis while decreasing lipolysis, mitochondriogenesis, and mitochondrial function. Together, these metabolic alterations would lead to increased adipogenesis and adipocyte lipid deposition, resulting in increased adipose depot mass. This review summarizes research characterizing estrogen-mediated adipose tissue metabolism and its possible relation to excessive adipose tissue accumulation associated with lipedema.  相似文献   

15.
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.  相似文献   

16.
Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but it decreases with ageing. As estrogen receptor alpha (Erα encoded by Esr1), and more precisely membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion, we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young (6-month-old) mice, FMD of mesenteric resistance arteries was reduced in Esr1−/− (lacking ERα) and C451A-ERα (lacking membrane ERα). In old (24-month-old) mice, FMD was reduced in WT mice compared to young mice, whereas it was not further decreased in Esr1−/− and C451A-ERα mice. Markers of oxidative stress were similarly increased in old WT and C451A-ERα mice. Reduction in oxidative stress with superoxide dismutase plus catalase or Mito-tempo, which reduces mitochondrial superoxide restored FMD to a normal control level in young C451A-ERα mice as well as in old WT mice and old C451A-ERα mice. Estradiol-mediated dilation was absent in old WT mice. We conclude that oxidative stress is a key event in the decline of FMD, and that an early defect in membrane ERα recapitulates phenotypically and functionally ageing of these resistance arteries. The loss of this function could take part in vascular ageing.  相似文献   

17.
Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.  相似文献   

18.
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients.  相似文献   

19.
The aim of this study was to assess the prognostic value of the steroid hormone receptor expression, counting the retinoid X receptor (RXR) and thyroid hormone receptors (THRs), on the two different breast cancer (BC) entities: multifocal/multicentric versus unifocal. The overall and disease-free survival were considered as the prognosis determining aspects and analyzed by uni- and multi-variate analysis. Furthermore, histopathological grading and TNM staging (T = tumor size, N = lymph node involvement, M = distant metastasis) were examined in relation to RXR and THRs expression. A retrospective statistical analysis was carried out on survival-related events in a series of 319 sporadic BC patients treated at the Department of Gynecology and Obstetrics at the Ludwig-Maximillian’s University in Munich between 2000 and 2002. The expression of RXR and THRs, including its two major isoforms THRα1 and THRα2, was analyzed by immunohistochemistry and showed to have a significant correlation for both BC entities in regard to survival analysis. Patients with multifocal/multicentric BC were exposed to a significantly worse disease-free survival (DFS) when expressing RXR. Patients with unifocal BC showed a significantly worse DFS when expressing THRα1. In contrast, a statistically significant positive association between THRα2 expression and enhanced DFS in multifocal/multicentric BC was shown. Especially the RXR expression in multifocal/multicentric BC was found to play a remarkably contradictory role for BC prognosis. The findings imply the need for a critical review of possible molecular therapies targeting steroid hormone receptors in BC treatment. Our results strengthen the need to further investigate the behavior of the nuclear receptor family, especially in relation to BC focality.  相似文献   

20.
Thoracic pair of mammary glands from steroid hormone-pretreated mice respond to hormones structurally and functionally in organ culture. A short exposure of glands for 24 h to 7,12 Dimethylbenz(a)anthracene (DMBA) during a 24-day culture period induced alveolar or ductal lesions. Methods: To differentiate the functional significance of ERα and ERβ, we employed estrogen receptor (ER) knockout mice. We compared the effects of DMBA on the development of preneoplastic lesions in the glands in the absence of ERα (αERKO) and ERβ (βERKO) using an MMOC protocol. Glands were also subjected to microarray analyses. We showed that estradiol can be replaced by EGF for pretreatment of mice. The carcinogen-induced lesions developed under both steroids and EGF pretreatment protocols. The glands from αERKO did not develop any lesions, whereas in βERKO mice in which ERα is intact, mammary alveolar lesions developed. Comparison of microarrays of control, αERKO and βERKO mice showed that ERα was largely responsible for proliferation and the MAP kinase pathways, whereas ERβ regulated steroid metabolism-related genes. The results indicate that ERα is essential for the development of precancerous lesions. Both subtypes, ERα and Erβ, differentially regulated gene expression in mammary glands in organ cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号