首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid nanocomposites of polystyrene (PS) and methacryl phenyl polyhedral oligomeric silsesquioxane (POSS) were synthesized by reactive melt blending in the mixing chamber of a torque rheometer using dicumyl peroxide (DCP) as a free radical initiator and styrene monomer as a chain transfer agent. The effects of mixing intensity and composition on the molecular structure and morphology of the PS‐POSS hybrid nanocomposites were investigated. The degree of POSS hybridization (αPOSS) was found to increase with the POSS content, DCP/POSS ratio, and rotor speed. For the PS‐POSS materials processed in the absence of styrene monomer, an increase in the αPOSS led to a reduction in the molecular weight by PS chain scission, as a consequence of the free radical initiation. On the other hand, the use of styrene monomer as a chain transfer agent reduces the steric hindrance in the hybridization reaction between POSS and PS, enhancing the degree of POSS hybridization and avoiding PS degradation. The PS‐POSS morphology consists of nanoscale POSS clusters and particles and microscale crystalline POSS aggregates. PS‐POSS with higher αPOSS values and lower amounts of nonbound POSS showed improved POSS dispersion, characterized by smaller interfacial thickness (t) and greater Porod inhomogeneity lengths (lp). The processing‐molecular structure–morphology correlations analyzed in this study allow the POSS dispersion level in the PS‐POSS materials to be tuned by controlling the reactive melt blending through the choice of the processing conditions. These insights are very useful for the development of PS‐POSS materials with optimized performance. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Composites of polydimethylsiloxane (PDMS) rubber modified by three kinds of polyhedral oligomeric silsesquioxanes (POSSs) as well as fumed silica were prepared through solution blending and then open two‐roll mill blending with curing agent. Subsequently, the influences of POSS on mechanical and thermal properties of the resulting composites were investigated in detail. The addition of POSS significantly enhanced the tensile strength and elongation at break of the composite but lowered the tensile modulus, which could be ascribed to the interruption of silica–silica and silica–PDMS interactions. Octamethylsilsesquioxane (OMS)/silica/PDMS and octaphenylsilsesquioxane (OPS)/silica/PDMS composites did not show desirable mechanical and thermal properties. Nevertheless, heptaphenylvinylsilsesquioxane (VPS)/silica/PDMS composite with 5 wt % VPS exhibited enhanced glass transition temperature (Tg), mechanical properties, and thermal stability. Further studies revealed that more VPS unfavorably affected properties of the composite. Scanning electron microscope and X‐ray diffraction demonstrated that owing to the grafting reaction, 5 wt % VPS in the rubber matrix could form microcrystal domains the most effectively. Thus, the improved mechanical properties and thermal stability just resulted from the the formation of microcrystal domains and the increase in stiffness of PDMS chains because of the graft of VPS onto PDMS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42173.  相似文献   

3.
In this study, a series of poly(4‐acetoxystyrene) (PAS)‐octavinyl polyhedral oligomeric silsesquioxane (POSS) blends and the polystyrene (PS)‐octavinyl POSS blends were prepared by the solution‐blending method and characterized with Fourier transform infrared (FTIR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) techniques. The results show that the glass‐transition temperature (Tg) of the PAS‐POSS blends increases at a relatively low POSS content and then decreases at a relatively high POSS content. POSS can effectively improve the thermal stability of the PAS‐POSS blends at low POSS content, and Tg of PAS‐POSS blends decreases with the increase in POSS content at relatively high POSS content. However, the Tg of the PS‐POSS blends persistently decreases even at very low POSS content. Tg change mechanism was investigated in detail by XRD, TEM, and FTIR spectra. The influence mechanism of POSS content and dispersion in composites, and parent polymer structure on thermal properties of the blends was investigated in detail. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A series of inorganic–organic molecular hybrids, poly(styrene‐co‐octavinyl‐polyhedral oligomeric silsesquioxane)s (PS‐POSSs), were synthesized, and their structures and properties were characterized by FTIR, 1H‐NMR, 29Si‐NMR, XRD, optical microscopy (OM), and atomic force microscopy (AFM). The chemical incorporation of POSS into polymer matrixes achieves uniform dispersion and makes the resultant hybrids display good film formability. The relationship between molecular structure of these hybrids and their dielectric constants and formation mechanism of low dielectric constant were investigated. The low dielectric constant of the hybrids mainly originates from the increase of free volume, involving the free volume of intrinsic porosity from POSS and an increase in the free volume owing to steric hindrance of bulky POSS. The latter plays a dominant role to increase the free volume and formation of low dielectric constant. Simultaneously, the polymer arm‐length has an important influence on the dielectric constant of the star‐type hybrids. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
A novel polyimide (PI) hybrid nanocomposite containing polyhedral oligomeric silsesquioxane (POSS) with well defined architecture has been prepared by copolymerization of octakis(glycidyldimethylsiloxy)octasilsesquioxane (Epoxy-POSS), 4,4′-oxydianiline diamine (ODA), and 4,4′-carbonyldiphthalic anhydride (BTDA). In these nanocomposite materials, the equivalent ratio of the Epoxy-POSS and ODA are adjustable, and the resultant PI-POSS nanocomposites give variable thermal and mechanical properties. More importantly, we intend to explore the possibility of incorporating POSS moiety through the Epoxy-POSS into the polyimide network to achieve the polyimide hybrid with lower dielectric constant (low-k) and thermal expansion. The lowest dielectric constant achieved of the POSS/PI material (PI-10P) is 2.65 by incorporating 10 wt% Epoxy-POSS (pure PI, k=3.22). In addition, when contents of the POSS in the hybrids are 0, 3, 10 wt% (PI-0P, PI-3P, PI-10P), and the resultant thermal expansion coefficients (TEC) are 66.23, 63.28, and 58.25 ppm/°C, respectively. The reduction in the dielectric constants and the resultant thermal expansion coefficients of the PI-POSS hybrids can be explained in terms of creating silsesquioxane cores of the POSS and the free volume increase by the presence of the POSS-tethers network resulting in a loose PI structure.  相似文献   

6.
Min-Chi Tseng 《Polymer》2010,51(23):5567-5575
Nanocomposites of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) have been prepared through copolymerization of furan-containing benzoxazine compounds and methylmethacrylate-POSS (MMA-POSS). Nanocomposites having MMA-POSS fractions of 0-70 wt% (POSS fractions of 0-28 wt%) are obtained. The high contents of MMA-POSS of the nanocomposites result in a reduction of their dielectric constants to 2.3. Moreover, some nanocomposites display POSS orientation into lamellar structures in nanometer sizes. The POSS orientation further reduces the dielectric constants of the nanocomposites to about 1.9. Hence, the prepared nanocomposites could be used as ultra-low-k materials for advanced microelectronics.  相似文献   

7.
A novel hybrid functional nanoparticle (denoted POSS‐MPS) was synthesized by aminopropyl‐functionalized mesoporous silica (AP‐MPS) with glycidyl polyhedral oligomeric silsesquioxane (G‐POSS). The G‐POSS was employed as molecular caps to envelop the MPS and improve the interaction with the polymer matrix. The POSS‐MPS hybrids were designed to improve the properties of cyanate ester (CE) without affecting its inherent properties. The POSS‐MPS/CE composites exhibited excellent improvement in dielectric properties, mechanical properties, and thermal properties due to increase of voids volume in the composites and reinforcement of interface interaction between organic and inorganic phase. The dielectric constant (κ) and loss factor (tan δ) of composites with 4 phr of POSS‐MPS reduced to 2.78 and 0.008 in comparison to pure CE with the value of 3.27 and 0.012, respectively. Moreover, the composites exhibited 14.3, 4.9, 57.5, and 8.7% enhancement in flexural strength, flexural modulus, impact strength, and glass transition temperature (Tg) in comparison to pure CE, respectively. The results manifested that introduction of POSS‐MPS into CE exhibited toughening and reinforcing effects on the composites. POLYM. COMPOS., 37:2142–2151, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
The development and commercialization of nanoparticles such as nanoclays (NCs), carbon nanotubes (CNTs) and polyhedral oligomeric silsesquioxanes (POSS) offers new possibilities to tailor adhesives at the nanoscale. Four types of POSS, with reactive mono-functional groups of isocyanatopropyl, glycidoxypropyl, aminoethyl and non-reactive octaphenyl, were incorporated in concentrations of 1, 3 and 5 wt% into a polyurethane (PU)-based adhesive. Thermo-mechanical bulk properties were studied using dynamic mechanical analysis (DMA). Adhesive properties were characterized in shear and peel modes. Atomic force microscopy (AFM) was used to study the nanoscale morphology. DMA measurements indicated that the neat PU possessed a glass transition temperature (T g) of ≈ 30°C. The T g of PU/POSS-glycidoxypropyl nanocomposite adhesive increased gradually with POSS concentration to 50°C for 5 wt%. PU/POSS-octaphenyl nanocomposite adhesive exhibited an increased T g by 10°C for 5 wt%. The incorporation of POSS-isocyanatopropyl in the PU had no effect on the T g. With respect to shear properties of POSS-octaphenyl-, POSS-isocyanatopropyl- and POSS-glycidoxypropyl-based PU nanocomposite adhesives, shear strength improved by 230, 178 and 137%, respectively, compared to neat PU. POSS-aminoethyl exhibited lower shear and peel strengths, while POSS-isocyanatopropyl provided the best balance of both higher shear and peel strengths compared to neat PU. It was concluded that the grafted functional group on the POSS and its reactivity with the PU network components were the decisive factors with respect to the thermo-mechanical, morphological and adhesive properties of the resulting nanocomposite adhesives. Consequently, the POSS/polyurethane based nanocomposite adhesives could be tailored for a large range of applications.  相似文献   

9.
Poly(ethylene terephthalate) (PET) chips were coated by trisilanolphenyl–polyhedral oligomeric silsesquioxane (T‐POSS) and hexakis (para‐allyloxyphenoxy) cyclotriphosphazene (PACP) using the predispersed solution method, and PET/PACP/T‐POSS hybrids were further prepared by the melt‐blending method. The influence of T‐POSS on the rheological, thermal, and mechanical properties and flame retardancy of PET/PACP composites were discussed. The results suggest that T‐POSS was homogeneously dispersed in the PET matrix, which reduced the negative effects on polymer rheology and mechanical properties. For the PET/4%PACP/1%T‐POSS sample, the tensile strength at break and Tg increased from 29.67 MPa and 81.7 °C (PET/5%PACP) to 34.8 MPa and 85.8 °C, respectively, but the sample also self‐extinguished within 2 s, and the heat release capacity was reduced by 27.9% in comparison with that of neat PET.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45912.  相似文献   

10.
The poly(styrene‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PS–POSS) organic–inorganic hybrid nanocomposites containing various percent of POSS were prepared via one‐step free radical polymerization and characterized by FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA technologies. The POSS contents in these nanocomposites were determined using FTIR calibration curve. The result shows that the POSS contents in nanocomposites can be tailored by varying the POSS feed ratios. On the basis of the POSS contents in the nanocomposites and the 1H NMR spectra, the number of reacted vinyl groups of each octavinyl‐POSS macromonomer were calculated to be 6–8. DSC and TGA measurements indicate that the incorporation of POSS into PS homopolymer can apparently improve the thermal properties of the polymeric materials. The dramatic Tg and Tdec increases are mainly due to the formation of star and low cross‐linking structure of the nanocomposites, where POSS cores behave as the joint points and hinder the motion and degradation of the polymeric chains. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
A series of poly(methyl methacrylate) (PMMA)/octavinyl polyhedral oligomeric silsesquioxane (POSS) blends were prepared by the solution‐blending method and characterized with Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. The glass‐transition temperature (Tg) of the PMMA–POSS blends showed a tendency of first increasing and then decreasing with an increase in the POSS content. The maximum Tg reached 137.2°C when 0.84 mol % POSS was blended into the hybrid system, which was 28.2°C higher than that of the mother PMMA. The X‐ray diffraction patterns, transmission electron microscopy micrographs, and Fourier transform infrared spectra were employed to investigate the structure–property relationship of these hybrid nanocomposites and the Tg enhancement mechanism. The results showed that at a relatively low POSS content, POSS as an inert diluent decreased the interaction between the dipolar carbonyl groups of the homopolymer molecular chains. However, a new stronger dipole–dipole interaction between the POSS and the carbonyl of PMMA species formed at the same time, and a hindrance effect of nanosize POSS on the motion of the PMMA molecular chain may have played the main role in the Tg increase of the hybrid nanocomposites. At relatively high POSS concentrations, the strong dipole–dipole interactions that formed between the POSS and carbonyl groups of the PMMA gradually decreased because of the strong aggregation of POSS. This may be the main reason for the resultant Tg decrease in these hybrid nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
An epoxy formulation was modified by adding various amounts of an epoxy functionalized polyhedral oligomeric silsesquioxane (POSS). The obtained networks were characterized in terms of reactivity, viscoelastic behaviour and mechanical properties. Spectroscopy measurements by FT-NIR demonstrated that the epoxy groups of POSS were almost as reactive as those of the DGEBA in the curing stage, while in the post-curing a lower reactivity of the latter was found, possibly due to steric hindrance effects. The dynamic-mechanical analysis showed an increase in the storage modulus in both glassy and rubbery regions. On the other hand, Tg and Tβ decreased with POSS content. The viscoelastic analysis showed that the addition of POSS enhanced the free volume and the tendency of the network to undergo thermal expansion. In particular, the β transition was made increasingly localized by increasing the POSS content. With respect to mechanical performances, the yield process was facilitated by incorporation of the POSS nanocages within the network, possibly due to an enhancement of the chain mobility. Fracture measurements showed an improvement of the parameters Kc and Gc up to 5 wt% of POSS, after which a decrease of toughness was observed. These results were supported by a fractographic analysis.  相似文献   

13.
The aim of this study was to design novel binary and ternary copolymers based on methacrylate and/or epoxy monomers reinforced with 10 wt % mono‐/octafunctional polyhedral oligomeric silsesquioxanes (POSS) compounds bearing one or eight epoxy or methacrylate moieties. The experimental parameters such as temperature and time of reaction, comonomer ratio and the incorporation of various types of POSS that strongly influences the curing behavior, polymerization kinetics, glass transition temperature (Tg), thermostability and morphological structure of the obtained copolymers were investigated through DSC, FTIR, DMA, TGA, and SEM techniques. The obtained results evidenced that the complex kinetic mechanisms of curing reactions for the binary and ternary copolymers ± POSS influence the thermomechanical and morphological properties of the materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42912.  相似文献   

14.
The thermal degradation of two polyhedral oligomeric silsesquioxane/polystyrene (POSS/PS) nanocomposites of formula R8(SiO1.5)8 POSS/PS and R′1R7(SiO1.5)8 POSS/PS (where R′ = Phenyl and R = Cyclopentyl), at 5% of POSS concentration, was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres. Compounds were prepared by the polymerization of styrene in the presence of POSS. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the obtained thermogravimetric (TG) curves were discussed and interpreted. The initial decomposition temperature (Ti), the temperature at 5% mass loss (T5%), the glass transition temperature (Tg), and the activation energy (Ea) of degradation of nanocomposites were determined and compared with each other and with those of unfilled PS. The Ti, T5%, and degradation Ea values of nanocomposites were higher than those of neat PS, thus indicating a better heat resistance and lower degradation rate, and then a better overall thermal stability. The use of POSS with a symmetric structure, in the synthesis of PS based nanocomposite, showed a decrease of Tg value not only in respect to asymmetric POSS/PS nanocomposite but also in respect to neat polymer, thus suggesting an influence of filler structure in the thermal properties of the materials. POLYM. COMPOS., 33:1903–1910, 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
A ternary nanocomposite consisting of poly(L-lactic acid) (PLLA), poly(D-lactic acid) (PDLA), and epoxy cyclohexyl polyhedral oligomeric silsesquioxane (e-POSS) was prepared by reactive blending method. Scanning electron microscopy revealed that the feeding of three compositions in batches, i.e., PDLA incorporation at different times, was more beneficial for the even dispersion of POSS in matrix. POSS introduction improved the homocrystallinity and stereocomplex of the blends. Rheological properties and heat resistance were enhanced, which indicated potential extensive application of PLLA-based materials. The optimization of degradation stability in saline buffer was attributed to the various hydrophobic properties of blends caused by POSS structure.  相似文献   

16.
We studied the sintering behavior and magnetic properties of Ni0.60-yCuyZn0.42Fe1.98O3.99 ferrites. The shrinkage is shifted toward lower temperature with increasing Cu content y. The addition of Bi2O3 sintering aid induces enhanced shrinkage at T < 900°C and dense ceramics are obtained after sintering at 900°C. Such ferrites exhibit a permeability of µ = 135-250 depending on the composition, sintering temperature and concentration of sintering additive. Ferrites with y = 0.20 show a high Curie temperature of T= 307°C. Multilayer inductors were fabricated and cofired at 900°C using ferrite tapes without and with 0.75 wt% Bi2O3. The compatibility of ferrite tapes with different metal pastes (Ag, AgPd, and Au) was evaluated. Ferrite tapes were also integrated between layers of low-k dielectric CT708 tapes and successfully cofired at 900°C. Preliminary tests indicate that the multilayer inductors can be operated up to temperatures of 250°C. This demonstrates that high-Tc Ni-Cu-Zn ferrites are promising magnetic materials for inductive components for high operating temperatures.  相似文献   

17.
BACKGROUND: Organic–inorganic nanocomposites were prepared by copolymerization of various monomers and polyhedral oligomeric silsesquioxane (POSS) derivatives. Preliminary results showed that styrene/styryl–POSS copolymers could be obtained using CpTiCl3 catalyst. In the work reported here, the copolymerization of styrene and styryl‐substituted POSS was studied in detail for a more effective catalyst, Cp*TiCl3. RESULTS: The glass transition temperature (Tg) of the copolymers prepared increased with increasing POSS content. The degradation temperature (Td) of the copolymers was 60 °C higher than that of syndiotactic polystyrene under nitrogen. Although the thermal properties were improved by incorporation of POSS, the catalytic activity decreased with POSS content. The racemic triad and syndiotactic index of the copolymers decreased with increasing POSS content. Gel permeation chromatograms of the copolymers exhibited multimodal distribution due to the presence of multi‐active centres, which were formed by interaction of Ti with the POSS siloxane linkage. CONCLUSION: With the incorporation of POSS, the thermal properties of polystyrene were improved. The styrene/styryl–POSS copolymers are formed through the various active sites arising from the interactions of Ti with POSS. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
An effective amphiphilic polyhedral oligomeric silsesquioxane (POSS) encapsulated poly(vinyl alcohol) (PVA) nanocomposite was successfully fabricated by solution blending method. Anionic octa(tetramethylammonium) (Octa‐TMA) and poly(ethylene glycol) (PEG) were used as cage side groups in POSS (Octa‐TMA‐POSS and PEG‐POSS) for the present study. Transmission electron microscopic analysis revealed the uniform dispersion of POSS in the PVA matrix. Crystallinity of PVA/POSS system was computed from differential scanning calorimetric studies. The effect of POSS on the mechanical, dynamic mechanical, and dielectric properties of PVA has been analyzed and discussed in detail with respect to the weight percentage of POSS. The incorporation of POSS in PVA matrix remarkably enhances the Young's modulus of the matrix. The viscoelastic properties such as storage modulus, loss modulus, damping behavior, and glass transition temperature of the membranes were evaluated. The relaxation corresponding to the crystal–crystal slippage characteristic of semicrystalline polymers were observed in storage modulus curves of PVA/POSS system, suggesting the crystalline nature of matrix even in the presence of POSS. Less polar, inert, and stiff inorganic center core of POSS contributes to the reduced energy dissipation and dielectric constant of PVA/POSS system. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45447.  相似文献   

19.
The study aims to produce poly(methyl methacrylate) (PMMA)-based lower density syntactic foams with hollow glass microspheres (HGMs) and to improve their mechanical properties by the addition of polyhedral oligomeric silsesquioxanes (POSSs) while maintaining the thermal properties of the neat polymer. First to understand the effect of POSS addition, PMMA–POSS composites with octaisobutyl and octaphenyl POSS were produced through extrusion. Higher relative flexural and impact strengths were obtained with POSS addition to PMMA. Obtaining more enhanced properties with octaphenyl POSS, PMMA-HGM-POSS hybrid syntactic foams were prepared with this additive. In general, the specific flexural strength and modulus of the PMMA syntactic foams were improved with the POSS loading, while the lower density and thermal properties of the PMMA syntactic foams were maintained. PMMA hybrid syntactic foams with 15 wt % HGMs and 0.25 wt % POSS exhibited 37.6% improvement in the specific flexural modulus with respect to the neat PMMA. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48368.  相似文献   

20.
Nanocomposites of polyimides (PI) with covalently grafted polyhedral oligomeric silsesquioxane (R7R′Si8O12 or POSS) units were prepared by thermally‐initiated free‐radical graft polymerization of methacrylcyclopentyl‐POSS (MA‐POSS) with the ozone‐pretreated poly[N,N′‐(1,4‐phenylene)‐3,3′,4,4′‐benzophenonetetra‐carboxylic amic acid] (PAA), followed by thermal imidization. The chemical composition and structure of the PI with grafted methacrylcyclopentyl‐POSS side chains (PI‐g‐PMA‐POSS copolymers) were characterized by nuclear magnetic resonance (NMR), X‐ray diffraction (XRD), and thermogravimetric analysis (TGA). The POSS molecules in each grafted PMA side chain of the amorphous PI films retained the nanoporous crystalline structure, and formed an aggregate of crystallites. The PI‐g‐PMA‐POSS nanocomposite films had both lower and tunable dielectric constants, in comparison with that of the pristine PI films. Dielectric constants (κ's) of about 3.0–2.2 were obtained. The present approach offers a convenient way for preparing low‐κ materials based on existing PI's. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号