首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Ultrasonic assisted friction stir welding (UaFSW) was used to join 6061-T6 aluminum and Ti6Al4V alloys. A small plunge depth endowed with the low heat input was used and the sound joints without obvious thickness reduction were achieved. A diffusion-type bonding without the intermetallic compounds layer was observed at the joint interface. The ultrasonic improved the diffusion thickness and decreased the average size of grains and titanium alloy fragments. A hook-like structure was formed at the bottom interface of the UaFSW joint, which improved the bonding length and the mechanical interlocking. The microhardness of the stir zone was increased because of the further grain refinement induced by ultrasonic. The maximum tensile strength of the UaFSW joint was 236 MPa, which reached 85% of the base 6061-T6 alloy.  相似文献   

2.
The majority of this research has concentrated on developing the self-support friction stir welding(SSFSW) tool which consists of a big concave upper shoulder and a small convex lower shoulder, and procedures for making reliable welds in aluminum hollow extrusion. The 5-mm-thick 6082-T6 aluminum alloy was self-support friction stir welded at a constant tool rotation speed of 800 r/min. The effect of welding speed on microstructure and mechanical properties was investigated. The results of transverse tensile test indicated that the tensile strength of joints increased and the elongation decreased with increasing welding speed. The whole values of microhardness of SSFSW joints increased with increasing welding speed from 10 to 200 mm/min. The defectfree joints were obtained at lower welding speeds and the tensile fracture was located at the heat-affected zone(HAZ) adjacent to the thermo-mechanically affected zone(TMAZ) on the advancing side. The investigation of the flow pattern of the softened metal around the SSFSW tool revealed that the flow pattern of the softened metal was driven by two shoulders and the stir pin. The failure of specimens in tension presented the ductile fracture mode.  相似文献   

3.
The solid-state nature of friction stir spot welding process provides outstanding advantages for the sound joining of aluminum alloys. Within this study, 3 mm-thick AA5052-H32 sheets are successfully joined by friction stir spot welding using 2344 hot-worked steel pin to investigate the effects of various tool plunge depths on the microstructure, mechanical and metallurgical properties of similar welds. Therefore, the experiments are performed at different plunge depths in the range of 3 mm–4 mm. Accordingly, the relationships between the process parameter (tool plunge depth) and the responses (microstructure, dome structure, microhardness and lap shear tensile load) are established. Microstructure analyses demonstrate that the increase in the plunge depth leads to more grain refinement within the stir zone, which significantly affects the mechanical performance of the similar joints. This study also indicates that the tool plunge depth in friction stir spot welding process has a noteworthy influence on the characteristic features of the 5052 aluminum alloy joints, such as the dome structure. Moreover, an explicit increase in the microhardness towards the weld stir zone is observed in all specimens. It is found that the average maximum tensile-shear force enhances with the increment in the tool plunge depth from 3 mm to 4 mm.  相似文献   

4.
为了提高Q235钢板和6082-T6铝合金对接的连接强度,采用搅拌摩擦焊进行对接焊接.研究了不同尺寸和形状的搅拌头、转速、焊接速度和偏移量等对铝钢对接焊缝组织的影响,进而优化了搅拌摩擦焊工艺.实验结果表明:不同形状的搅拌头影响接头"钉子"形状,接头的不同位置处由于受到不同热循环和搅拌导致晶粒尺寸不同,从而影响接头的力学性能.当搅拌针旋转速度260 r/min,焊接速度16 mm/min,针头偏向铝侧0.2 mm时,所得焊缝的拉伸强度为141.204 MPa,为最佳工艺参数.在此最优参数下获得过渡层的厚度约为8μm,界面的主要成分是Fe Al3.  相似文献   

5.
对6082-T6铝合金搅拌摩擦焊接头进行自然时效和人工时效处理,通过透射电子显微镜、扫描电子显微镜、拉伸实验机和显微硬度计对组织演变和力学性能进行研究。结果表明:人工时效处理后显微硬度比焊态和自然时效高10~25HV,提高焊核区和热机影响区硬度效果明显好于自然时效。经过焊后自然时效、人工时效的焊接接头力学性能得到一定程度的提升,人工时效析出相比自然时效析出相抗拉强度提高12%,延伸率降低9%,人工时效提高拉伸强度效果更明显。人工时效处理后,焊核区组织发生显著变化,NZ主要为GP区,经过人工时效后NZ强化效应随团簇和GP区尺寸增大及数量增多而加强。HAZ主要为粗大的β′,经过人工时效后变化不大,硬度基本保持不变。通过对微观组织进行研究发现析出物的形状由界面能和应变能决定。  相似文献   

6.
对8mm厚的6082-T6铝合金进行了搅拌摩擦焊接试验,焊后对工艺参数与接头显微组织及力学性能的关系进行了分析。结果表明:焊核区显微组织为细小等轴晶组织。分析焊接速度对接头抗拉强度的影响得出规律:随着焊接速度的增大,接头强度增大,但焊接速度达到一定值时,接头性能达到最高值,之后随着焊接速度变大,接头就会出现缺陷,影响接头的性能。  相似文献   

7.
为了解释了回填式搅拌摩擦点焊的连接机理,本文根据6082-T6铝合金回填式搅拌摩擦点焊焊接过程的特点,建立了简化的热源模型,利用有限元分析软件ANSYS模拟出焊接过程中的温度场,进而耦合得到其应力场.结果表明:随着焊接过程的进行,铝合金6082-T6最高温度分布在袖筒1/2处,焊点处粘塑性金属的最大流动速度出现在铝合金上表面袖筒内侧区域;通过分析模拟过程中流体流动的流线与试验测量所得接头形貌照片,得到流场的分布规律.  相似文献   

8.
目的 针对2219铝合金搅拌摩擦焊接头受焊接热作用和机械搅拌作用的影响,极易产生组织和力学性能不均匀的情况,深入研究接头的局部力学性能,为焊接工艺优化提供理论指导.方法 采用显微组织分析与数字图像相关(DIC)技术测试相结合的方法,对2219铝合金搅拌摩擦焊接头的组织和局部力学性能进行表征,并建立搅拌摩擦焊接头各区域的局部力学性能模型.结果 2219铝合金搅拌摩擦焊接头的力学性能薄弱区为热机影响区.试样断裂前该区域局部应力达到345 MPa,局部应变为18.9%,而此时母材应变仅为1.91%.结论 热机影响区的组织在焊接热作用和机械搅拌的双重作用下发生了粗化和软化,导致该区的力学性能降低,是整个焊接接头的薄弱区域.  相似文献   

9.
The influence of the plastic behaviour of two aluminium alloys, very popular in welding construction, on friction stir weldability, is analysed in this work. The two base materials, a non-heat-treatable (AA5083-H111) and a heat-treatable aluminium (AA6082-T6) alloy, are characterised by markedly different strengthening mechanisms and microstructural evolution at increasing temperatures. Their plastic behaviour, under different testing conditions, was analysed and compared. The two base materials were also welded under varied friction stir welding (FSW) conditions in order to characterise their weldability. The relation between weldability, material flow during FSW and the plastic behaviour of the base materials, at different temperatures, was analysed. It was found that the AA6082 alloy, which displays intense flow softening during tensile loading at high temperatures, and is sensitive to dynamic precipitation and overageing under intense non-uniform deformation, displays good weldability in FSW. Under the same welding conditions, the AA5083 alloy, which in quasi-static conditions displays steady flow behaviour at increasing temperatures, and is sensitive to moderate hardening at high strain rates, displays poor weldability.  相似文献   

10.
乔建毅  邵有发  阮野  王文权 《材料导报》2016,30(24):94-97, 102
对高速列车车体常用铝合金6082与5083板材进行熔化极氩弧焊(MIG)对接,利用光学显微镜和扫描电镜分析异种材料焊接接头的显微组织特点,利用显微硬度计、拉伸试验机和电化学工作站对接头的力学性能和耐腐蚀性能进行测试和分析。研究结果表明,焊缝成型良好,焊缝区由细小的胞状树枝晶和等轴晶构成,熔合线附近为粗大的柱状晶;焊接接头抗拉强度为199.92 MPa,断后伸长率为5.18%,断裂位置在铝合金6082的焊接热影响区(HAZ),为韧性断裂,接头的正弯性能较差,背弯性能良好;铝合金5083侧的热影响区宽为4mm,6082侧的热影响区宽为15mm,接头两侧的硬度分布有明显差别,在6082侧距焊缝中心12.5mm的显微硬度最低为63HV;6082-5083异种铝合金焊缝的耐蚀性能优于母材5083,但比母材6082差。  相似文献   

11.
In this paper, 5-mm-thick 6082-T6 aluminum alloy was joined by means of self-support friction stir welding (SSFSW). Here we report the grain structure and second phase particles in various regions including the welding nugget zone (WNZ), thermo-mechanically affected zone (TMAZ), and heat affected zone (HAZ). In the upper part of the joint, microhardness in the TMAZ in proximity of the UWNZ was the highest (average 89.4 HV) due to the severe plastic deformation. The similar result was also found in the lower part of the SSFSW joint. The microstructural development in each region was a strong function of the local thermo-mechanical cycle experienced during welding. Some coarse equiaxed grains which were produced in incomplete dynamic recrystallization process and dissolution of some precipitates have been observed in TMAZ. The HAZ retained the same grain structure as the base material, however, the grain size decreased with increasing distance of the weld centerline.  相似文献   

12.
Sheets from commercial purity aluminium AA1050 and aluminium alloy AA6016 were processed by accumulative roll bonding to obtain an ultrafine-grained microstructure. The accumulative roll bonded samples showed a significant increase in specific strength paired with high ductility. Despite a strongly elongated grain structure, tensile testing of samples oriented 45° to the rolling direction revealed considerable improvement in elongation to failure compared to the samples oriented parallel to the rolling direction. From hydraulic bulge tests, it was observed that the accumulative roll bonded samples reached higher burst pressures and slightly lower equivalent strains in comparison to the as-received conventionally grain-sized samples. This behaviour reflects the extraordinary mechanical properties of the ultrafine-grained materials and indicates promising metal sheet formability.  相似文献   

13.
In this research, ultrafine grained strips of commercial pure strain hardenable aluminum (AA1050) were produced by accumulative roll-bonding (ARB) technique. These strips were joined by friction stir welding (FSW) in immersed (underwater) and conventional (in-air) conditions to investigate the effect of the immersion method on the microstructure and mechanical properties of the joint, aiming to reduce the deterioration of the mechanical properties of the joint. Transmission electron microscopy and X-ray diffraction analyses were used to evaluate the microstructure, showing smaller grains and subgrains in the stir zone of the immersed FSW condition with respect to the conventional FSW method. The hardness and tensile properties of the immersed friction stir welded sample and ARBed base metal show more similarity compared to the conventional friction stir welded sample. Moreover, the aforementioned method can result in the enhancement of the superplasticity tendency of the material.  相似文献   

14.
In this study, the effects of rotation speed and dwell time on the mechanical properties and microstructure of friction stir spot welded joints of dissimilar aluminum and titanium alloys were investigated. Aluminum AA6061 and titanium Ti-6Al-4 V alloys were selected as the work piece. The joint quality, mechanical behavior, and microstructural evolution in the welded regions were considerably affected by the welding parameters. The results of scanning electron microscopy showed the formation of Ti3Al intermetallic compounds near the thermomechanical affected zone, which significantly affected the properties of the welding joint. Maximum tensile shear load was produced at 1000 min−1 and 10 s dwell time. Moreover, the welding joint microhardness was improved with increasing the rotation speed.  相似文献   

15.
Aluminum alloys and high density polyethylene are utilized in a wide variety of industrial applications. In the present work the feasibility of friction stir butt welding between AA5059 alloy and high density polyethylene sheets is examined. The bonding mechanism, joint strength, and microhardness are considered in this study. Various welding parameters and tool alignment were investigated until sound joints were achieved by positioning approximately 85% of the rotating tool in the aluminum material on the advancing side (1.4 mm offset) at constant spindle speed and traverse speed of 710 rpm and 63 mm/min, respectively. The results indicate that AA5059 aluminum and high density polyethylene sheets can be successfully joined with a combination of secondary bonding and mechanical interlocking of the materials, which provides a potential alternative to adhesive bonding or mechanical fastening.  相似文献   

16.
铝/镀锌钢搅拌摩擦铆焊接头组织与力学性能   总被引:1,自引:1,他引:0  
为实现铝钢之间的优质连接,采用搅拌摩擦铆焊新方法对6061铝合金和DP600镀锌钢进行搭接点焊,利用扫描电子显微镜、能谱仪及拉伸试验对接头的微观组织及力学性能进行了研究.结果表明:接头成形平整美观,中心没有匙孔;接头包含铆接区和扩散区,其中在铆接区铝合金以铝柱的形式嵌入到钢板的圆孔中,形成了一个"铝铆钉",底部有富铝的α固溶体偏聚,圆孔四周形成扩散区,铝和钢形成了冶金结合,依靠金属间化合物Fe Al3连接在一起;接头有3种断裂形式,在最佳工艺参数下接头的抗剪力达到8.2 k N;铝柱上断口的微观形貌是被拉长的韧窝,扩散区的断口由灰色基体和白色颗粒组成.  相似文献   

17.
Multilayered Al/Cu/Mn composites were produced from aluminum 1100 strips, commercial copper foils and manganese powders, through accumulative roll bonding (ARB). The structural and microstructural evolution of the produced composites was studied by X-ray diffraction and scanning electron microscopy. Also, their mechanical properties at various ARB cycles were studied by microhardness and tensile tests. In this process after nine ARB cycles, a multilayered Al/Cu/Mn composite with homogeneously distributed, fragmented copper layers and Mn powders in the aluminum matrix was produced. Also, it was observed that with increasing strain by progression of the ARB process, the strength and microhardness of the produced composites increased.  相似文献   

18.
Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds.  相似文献   

19.
目的在保证搅拌速度一定时,针对8 mm厚的7A52铝合金,在不同焊接速度下采用搅拌摩擦焊(FSW)进行焊接试验,研究其焊接接头的显微组织及力学性能。方法利用搅拌摩擦焊机进行对接焊接,焊后制取金相试样观察焊接接头宏观形貌和显微组织,并测定其力学性能。结果7A52铝合金FSW焊接接头焊核区的面积随着焊接速度的增大而增大,当焊接速度为250mm/min时,焊接接头的焊核区面积最大,焊核区的显微组织都为细小的等轴晶,焊接接头横截面的焊核区呈明显"洋葱环"的形貌,而热力影响区的结构特征则呈现出了较高的塑性变形流线层。焊接接头显微硬度分布都呈现出"W"形变化,在焊接速度为150 mm/min时,焊接接头的平均抗拉强度能达到452 MPa,达到了母材抗拉强度的89%。结论通过对不同焊接速度下7A52铝合金FSW焊接接头的组织和性能进行研究,得到了不同焊接速度下焊接接头组织和力学性能。  相似文献   

20.
For the purpose of improving the strength of this dissimilar joint,the present study was carried out to investigate the improvement in intermetallic layer by using a third material foil between the faying edges of the friction stir welded and hybrid welded Al6061-T6/AZ31 alloy plates.The difference in microstructural and mechanical characteristics of friction stir welded and hybrid welded Al6061-T6/AZ31 joint was compared.Hybrid buttwelding of aluminum alloy plate to a magnesium alloy plate was successfully achieved with Ni foil as filler material,while defect-free laser-friction stir welding(FSW) hybrid welding was achieved by using a laser power of 2 kW.Transverse tensile strength of the joint reached about 66% of the Mg base metal tensile strength in the case of hybrid welding with Ni foil and showed higher value than that of the friction stir welded joint with and without the third material foil.This may be due to the presence of less brittle Ni-based intermetallic phases instead of Al12Mg17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号