首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc levels in serum and/or tissue are reported to be altered in melanoma with unknown effects on melanoma development and biology. The purpose of this study was to examine the effects of acute chelation of free intracellular zinc pools in melanoma cell lines Bowes and A375, as well as selected melanoma tissue explants with high or low intracellular free zinc. Zinc chelating agent TPEN at the concentration of 25 µM was employed during 48 h, which significantly reduced intracellular free zinc while decreasing melanoma cell proliferation, inducing G1/S arrest and cell damage leading to mitochondrial, caspase-dependent apoptosis. Chelation of free zinc was also associated with increased generation of superoxide in cell lines but not marked lysosomal membrane damage. Conversely, melanoma explant cultures mostly displayed time-dependent loss of lysosomal membrane integrity in the presence of slowly growing superoxide levels. Loss of free zinc-dependent p53 activity was similarly disparate in individual melanoma models. Surviving melanoma cells were arrested in the cell cycle, and varying proportions of them exhibited features characteristic of premature senescence, which increased in time despite zinc reloading. The present results show that melanoma cells with varying free zinc levels respond to its acute loss in a number of individual ways, reflecting activated mechanisms including oxidative stress, lysosomal damage, and p53 activity leading to heterogenous outcomes including cell death, transient, and/or permanent cell cycle arrest and premature senescence.  相似文献   

2.
Autophagy, a cellular self-digestion process, involves the degradation of targeted cell components such as damaged organelles, unfolded proteins, and intracellular pathogens by lysosomes. It is a major quality control system of the cell and plays an important role in cell differentiation, survival, development, and homeostasis. Alterations in the cell autophagic machinery have been implicated in several disease conditions, including neurodegeneration, autoimmunity, cancer, infection, inflammatory diseases, and aging. In non-alcoholic fatty liver disease, including its inflammatory form, non-alcoholic steatohepatitis (NASH), a decrease in cell autophagic activity, has been implicated in the initial development and progression of steatosis to NASH and hepatocellular carcinoma (HCC). We present an overview of autophagy as it occurs in mammalian cells with an insight into the emerging understanding of the role of autophagy in NASH and NASH-related HCC.  相似文献   

3.
A novel autophagy inhibitor, autophazole (Atz), which promoted cancer cell death via caspase activation, is described. This compound was identified from cell-based high-content screening of an imidazole library. The results showed that Atz was internalized into lysosomes of cells where it induced lysosomal membrane permeabilization (LMP). This process generated nonfunctional autolysosomes, thereby inhibiting autophagy. In addition, Atz was found to promote LMP-mediated apoptosis. Specifically, LMP induced by Atz caused release of cathepsins from lysosomes into the cytosol. Cathepsins in the cytosol cleaved Bid to generate tBid, which subsequently activated Bax to induce mitochondrial outer membrane permeabilization (MOMP). This event led to cancer cell death via caspase activation. Overall, the findings suggest that Atz will serve as a new chemical probe in efforts aimed at gaining a better understanding of the autophagic process.  相似文献   

4.
Elevation of intracellular cAMP levels has been implicated in glioma cell proliferation inhibition, differentiation, and apoptosis. Inhibition of phosphodiesterase is a way to elevate intracellular cAMP levels. The present study aimed to investigate the anti-glioma potential of dipyridamole, an inhibitor of phosphodiesterase. Upon treatment with dipyridamole, human U87 glioma cells decreased cell viability, clonogenic colonization, migration, and invasion, along with Noxa upregulation, Endoplasmic Reticulum (ER) stress, impaired autophagic flux, Yes-associated Protein 1 (YAP1) phosphorylation, and YAP1 reduction. Pharmacological and genetic studies revealed the ability of dipyridamole to initiate Noxa-guided apoptosis through ER stress. Additionally, the current study further identified the biochemical role of YAP1 in communicating with ER stress and autophagy under situations of dipyridamole treatment. YAP1 promoted autophagy and protected glioma cells from dipyridamole-induced apoptotic cell death. Dipyridamole impaired autophagic flux and rendered glioma cells more vulnerable to apoptotic cell death through ER stress-inhibitable YAP1/autophagy axis. The overall cellular changes caused by dipyridamole appeared to ensure a successful completion of apoptosis. Dipyridamole also duplicated the biochemical changes and apoptosis in glioma T98G cells. Since dipyridamole has additional biochemical and pharmacological properties, further research centered on the anti-glioma mechanisms of dipyridamole is still needed.  相似文献   

5.
T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy.  相似文献   

6.
Hypoxia is a major obstacle to gastric cancer (GC) therapy and leads to chemoresistance as GC cells are frequently exposed to the hypoxia environment. Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines. However, detailed mechanisms involved in the treatment of GC using APG are not fully understood. In this study, we investigated the biological activity of and molecular mechanisms involved in APG-mediated treatment of GC under hypoxia. APG promoted autophagic cell death by increasing ATG5, LC3-II, and phosphorylation of AMPK and ULK1 and down-regulating p-mTOR and p62 in GC. Furthermore, our results show that APG induces autophagic cell death via the activation of the PERK signaling, indicating an endoplasmic reticulum (ER) stress response. The inhibition of ER stress suppressed APG-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia. Taken together, our findings indicate that APG activates autophagic cell death by inhibiting HIF-1α and Ezh2 under hypoxia conditions in GC cells.  相似文献   

7.
The duration of denture use, oral hygiene, smoking and male sex were identified as risk factors for oral mucosal lesions. As it is well known, all the oral mucosal lesions associated with risk factors have an important degree of malignity. Chronic mechanical irritation can be another cause of oral cancer and it is produced by the constant action of a deleterious agent from the oral cavity. Autophagy represents a complex evolutionary conserved catabolic process in which cells self-digest intracellular organelles in order to regulate their normal turnover and remove the damaged ones with compromised function to further maintain homeostasis. Autophagy is modulated by mTOR kinase and indirectly by PI3K/AKT survival pathway. Due to its dual capacity to either induce cell death or promote cell survival, important evidence pointed that autophagy has a two-faced role in response to chemotherapy in cancer. In conclusion, understanding how to overcome cytoprotective autophagy and how to take advantage of autophagic cell death is critical in order to enhance the cancer cells sensitivity to particular therapeutic agents.  相似文献   

8.
The use of natural compounds is promising in approaches to prevent and treat cancer. The long-term application of most currently employed chemotherapy techniques has toxic side effects. Eugenol, a phenolic phytochemical extracted from certain essential oils, has an anti-cancer effect. The modulation of autophagy can promote either the survival or apoptosis of cancer cells. Triple-negative (MDA-MB-231) and HER2 positive (SK-BR-3) breast cancer cell lines were treated with different doses of eugenol. Apoptosis was detected by a flow-cytometry technique, while autophagy was detected by acridine orange. Real-time PCR and Western blot assays were applied to investigate the effect of eugenol on the gene and protein expression levels of autophagy and apoptotic genes. Treating cells with different concentrations of eugenol significantly inhibited cell proliferation. The protein levels of AKT serine/threonine kinase 1 (AKT), forkhead box O3 (FOXO3a), cyclin dependent kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor (p27), and Caspase-3 and -9 increased significantly in Eugenol-treated cells. Eugenol also induced autophagy by upregulating the expression levels of microtubule-associated protein 1 light chain 3 (LC3) and downregulating the expression of nucleoporin 62 (NU p62). Eugenol is a promising natural anti-cancer agent against triple-negative and HER2-positive breast cancer. It appears to work by targeting the caspase pathway and by inducing autophagic cell death.  相似文献   

9.
Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.  相似文献   

10.
Autophagy is the process by which intracellular components are degraded by lysosomes. It is also activated by oxidative stress; hence, autophagy is thought to be closely related to oxidative stress, one of the major causes of diabetic neuropathy. We previously reported that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) induced antioxidant enzymes and protected Schwann cells from oxidative stress. However, the relationship between autophagy and oxidative stress-induced cell death in diabetic neuropathy has not been elucidated. Treatment with tert-butyl hydroperoxide (tBHP) decreased the cell survival rate, as measured by an MTT assay in immortalized Fischer rat Schwann cells 1 (IFRS1). A DHA pretreatment significantly prevented tBHP-induced cytotoxicity. tBHP increased autophagy, which was revealed by the ratio of the initiation markers, AMP-activated protein kinase, and UNC51-like kinase phosphorylation. Conversely, the DHA pretreatment suppressed excessive tBHP-induced autophagy signaling. Autophagosomes induced by tBHP in IFRS1 cells were decreased to control levels by the DHA pretreatment whereas autolysosomes were only partially decreased. These results suggest that DHA attenuated excessive autophagy induced by oxidative stress in Schwann cells and may be useful to prevent or reduce cell death in vitro. However, its potentiality to treat diabetic neuropathy must be validated in in vivo studies.  相似文献   

11.
12.
We recently demonstrated that chemical proteasome inhibition induced inner retinal degeneration, supporting the pivotal roles of the ubiquitin–proteasome system in retinal structural integrity maintenance. In this study, using beclin1-heterozygous (Becn1-Het) mice with autophagic dysfunction, we tested our hypothesis that autophagy could be a compensatory retinal protective mechanism for proteasomal impairment. Despite the reduced number of autophagosome, the ocular tissue morphology and intraocular pressure were normal. Surprisingly, Becn1-Het mice experienced the same extent of retinal degeneration as was observed in wild-type mice, following an intravitreal injection of a chemical proteasome inhibitor. Similarly, these mice equally responded to other chemical insults, including endoplasmic reticulum stress inducer, N-methyl-D-aspartate, and lipopolysaccharide. Interestingly, in cultured neuroblastoma cells, we found that the mammalian target of rapamycin-independent autophagy activators, lithium chloride and rilmenidine, rescued these cells against proteasome inhibition-induced death. These results suggest that Becn1-mediated autophagy is not an effective intrinsic protective mechanism for retinal damage induced by insults, including impaired proteasomal activity; furthermore, autophagic activation beyond normal levels is required to alleviate the cytotoxic effect of proteasomal inhibition. Further studies are underway to delineate the precise roles of different forms of autophagy, and investigate the effects of their activation in rescuing retinal neurons under various pathological conditions.  相似文献   

13.
8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer.  相似文献   

14.
Resistance phenomena, especially acquired drug resistance, have been severely hampering the application of chemotherapeutics during cancer chemotherapy. Autophagy plays a role in maintaining the survival of cancer cells and might mediate resistance to chemotherapy drugs. Herein, a new series of 5-amino-2-ether-benzamide derivatives were synthesized and evaluated as autophagy inhibitors. Selected from 14 synthesized compounds as lead autophagy inhibitor, N-(cyclohexylmethyl)-5-(((cyclohexylmethyl)amino)methyl)-2-((4-(trifluoromethyl)benzyl)oxy)benzamide ( 4 d ) showed the most obvious effect of LC3B protein conversion. Further, its autophagy inhibition, evaluated by using transmission electron microscopy and confocal microscopy, showed that the fusion of autophagosomes and lysosomes in the final stage of autophagic flux was suppressed. We also found that 4 d could enhance the chemosensitivity of vincristine in vincristine-resistant esophageal cancer cell line Eca109/VCR in a synergistic, associative manner. Moreover, a computational study showed that 4 d might bind with p62-zz to inhibit autophagy. We also found 4 d to be relatively less cytotoxic to normal cells versus cancer cells than the reported p62-zz inhibitor.  相似文献   

15.
Parkinson disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons. Mitochondrial dysfunction, oxidative stress or protein misfolding and aggregation may underlie this process. Autophagy is an intracellular catabolic mechanism responsible for protein degradation and recycling of damaged proteins and cytoplasmic organelles. Autophagic dysfunction may hasten the progression of neuronal degeneration. In this study, resveratrol promoted autophagic flux and protected dopaminergic neurons against rotenone-induced apoptosis. In an in vivo PD model, rotenone induced loss of dopaminergic neurons, increased oxidation of mitochondrial proteins and promoted autophagic vesicle development in brain tissue. The natural phytoalexin resveratrol prevented rotenone-induced neuronal apoptosis in vitro, and this pro-survival effect was abolished by an autophagic inhibitor. Although both rotenone and resveratrol promoted LC3-II accumulation, autophagic flux was inhibited by rotenone and augmented by resveratrol. Further, rotenone reduced heme oxygenase-1 (HO-1) expression, whereas resveratrol increased HO-1 expression. Pharmacological inhibition of HO-1 abolished resveratrol-mediated autophagy and neuroprotection. Notably, the effects of a pharmacological inducer of HO-1 were similar to those of resveratrol, and protected against rotenone-induced cell death in an autophagy-dependent manner, validating the hypothesis of HO-1 dependent autophagy in preventing neuronal death in the in vitro PD model. Collectively, our findings suggest that resveratrol induces HO-1 expression and prevents dopaminergic cell death by regulating autophagic flux; thus protecting against rotenone-induced neuronal apoptosis.  相似文献   

16.
Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by deficiency of polycystin-1 (PC1) or polycystin-2 (PC2). Altered autophagy has recently been implicated in ADPKD progression, but its exact regulation by PC1 and PC2 remains unclear. We therefore investigated cell death and survival during nutritional stress in mouse inner medullary collecting duct cells (mIMCDs), either wild-type (WT) or lacking PC1 (PC1KO) or PC2 (PC2KO), and human urine-derived proximal tubular epithelial cells (PTEC) from early-stage ADPKD patients with PC1 mutations versus healthy individuals. Basal autophagy was enhanced in PC1-deficient cells. Similarly, following starvation, autophagy was enhanced and cell death reduced when PC1 was reduced. Autophagy inhibition reduced cell death resistance in PC1KO mIMCDs to the WT level, implying that PC1 promotes autophagic cell survival. Although PC2 expression was increased in PC1KO mIMCDs, PC2 knockdown did not result in reduced autophagy. PC2KO mIMCDs displayed lower basal autophagy, but more autophagy and less cell death following chronic starvation. This could be reversed by overexpression of PC1 in PC2KO. Together, these findings indicate that PC1 levels are partially coupled to PC2 expression, and determine the transition from renal cell survival to death, leading to enhanced survival of ADPKD cells during nutritional stress.  相似文献   

17.
Programmed cell death (PCD) is a crucial process required for the normal development and physiology of metazoans. The three major mechanisms that induce PCD are called type I (apoptosis), type II (autophagic cell death), and type III (necrotic cell death). Dysfunctional PCD leads to diseases such as cancer and neurodegeneration. Although apoptosis is the most common form of PCD, recent studies have provided evidence that there are other forms of cell death. One of such cell death is autophagic cell death, which occurs via the activation of autophagy. The present review summarizes recent knowledge about autophagic cell death and discusses the relationship with tumorigenesis.  相似文献   

18.
Ribose-5-phosphate isomerase A (RPIA) regulates tumorigenesis in liver and colorectal cancer. However, the role of RPIA in lung cancer remains obscure. Here we report that the suppression of RPIA diminishes cellular proliferation and activates autophagy, apoptosis, and cellular senescence in lung cancer cells. First, we detected that RPIA protein was increased in the human lung cancer versus adjust normal tissue via tissue array. Next, the knockdown of RPIA in lung cancer cells displayed autophagic vacuoles, enhanced acridine orange staining, GFP-LC3 punctae, accumulated autophagosomes, and showed elevated levels of LC3-II and reduced levels of p62, together suggesting that the suppression of RPIA stimulates autophagy in lung cancer cells. In addition, decreased RPIA expression induced apoptosis by increasing levels of Bax, cleaved PARP and caspase-3 and apoptotic cells. Moreover, RPIA knockdown triggered cellular senescence and increased p53 and p21 levels in lung cancer cells. Importantly, RPIA knockdown elevated reactive oxygen species (ROS) levels. Treatment of ROS scavenger N-acetyl-L-cysteine (NAC) reverts the activation of autophagy, apoptosis and cellular senescence by RPIA knockdown in lung cancer cells. In conclusion, RPIA knockdown induces ROS levels to activate autophagy, apoptosis, and cellular senescence in lung cancer cells. Our study sheds new light on RPIA suppression in lung cancer therapy.  相似文献   

19.
Autophagy refers to the process involving the decomposition of intracellular components via lysosomes. Autophagy plays an important role in maintaining and regulating cell homeostasis by degrading intracellular components and providing degradation products to cells. In vivo, autophagy has been shown to be involved in the starvation response, intracellular quality control, early development, and cell differentiation. Recent studies have revealed that autophagy dysfunction is implicated in neurodegenerative diseases and tumorigenesis. In addition to the discovery of certain disease-causing autophagy-related mutations and elucidation of the pathogenesis of conditions resulting from the abnormal degradation of selective autophagy substrates, the activation of autophagy is essential for prolonging life and suppressing aging. This article provides a comprehensive review of the role of autophagy in health, physiological function, and autophagy-related disease.  相似文献   

20.
Inhibition of histone deacetylase (HDAC) has been demonstrated to be an effective strategy for cancer treatment. In this work, we have developed a new agent Ir-VPA , which exhibits the cell death mode switching between apoptosis and autophagy due to the distinct level of HDAC6 inhibition. Ir-VPA indicates the best anticancer activity to HeLa cells, and could be hydrolyzed due to the high expression of the esterase in HeLa cells. Ir-VPA could accumulate in nuclei, induce severe DNA damages and cell cycle arrest at G2/M phase. The anticancer mechanism of Ir-VPA to HeLa cells was dependent on the HDAC6 inhibitory performance, as the caspase dependent apoptosis at low concentration (IC50) and autophagy with the autophagy flux blockage at high concentration (2×IC50). This is resulted from the distinct inhibitory levels of HDAC6, as moderate/complete inhibition at the concentration of IC50/2×IC50.In the presence of autophagic inhibitor chloroquine, the apoptotic population elevated from 32.7 % to 61.7 %, indicating that Ir-VPA could activate apoptotic process through the autophagolysosome fusion inhibition. Ir-VPA also exhibits excellent antiproliferative behavior to 3D HeLa multicellular tumor spheroids (MCTSs). This work not only provided a new HDAC6 inhibitor and novel anticancer mechanism for the effective treatment of cervical cancer, but also demonstrated the strategy to conjugate the metal fragment with active organic drug to enhance the anticancer performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号