首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
最小二乘支持向量机在大坝变形预测中的应用   总被引:11,自引:5,他引:11  
介绍了基于统计学习理论的一种新的机器学习技术———支持向量机(SVM)和其拓展方法———最小二乘支持向量机(LSSVM),并将LSSVM算法应用于混凝土大坝安全监控中的变形预测。根据实测数据,建立了基于LSSVM算法的大坝变形预测模型,同时与经典SVM预测模型进行分析比较。结果表明,LSSVM和经典SVM算法在大坝变形预测中都具有较好的可行性、有效性及较高的预测精度;LSSVM在算法的学习训练效率上比SVM有较大的优势,更适合于解决大规模的数据建模。  相似文献   

2.
基于提升小波和LS-SVM的大坝变形预测   总被引:1,自引:1,他引:1  
提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果.算例结果表明,该方法较符合实际情况,具有很高的预测精度和良好的泛化能力.  相似文献   

3.
徐洪钟  滕坤  李雪红 《水电能源科学》2011,29(12):92-94,215
针对神经网络用于基坑变形预测存在结构难确定、训练易陷入局部最优及易过学习等问题,构造滚动时间窗.,以已有的实测时间序列为样本,利用最小二乘支持向量机(LS-SVM)建立基坑预测模型,应用网格搜索算法优化模型参数,连续滚动地多步预测基坑变形.实例结果表明,该模型预测效果优于BP神经网络,具有所需数据少、推广能力强等优点.  相似文献   

4.
支持向量机的训练速度慢.制约了它的发展和推广应用。Suykens提出了一种新的支持向量机方法——最小二乘支持向量机。最小二乘支持向量机是支持向量机的发展和改进,它采用等式约束替代不等式约束,求解速度大大加快。将其用于大坝的渗流监测中.并与传统的支持向量机进行了比较,结果显示二者的预测效果都比较好.但是最小二乘支持向量机的训练效率比支持向量机要高。  相似文献   

5.
基于已施工的基坑工程监测资料,提取对基坑变形影响明显的因素.以基坑变形的各影响因素作为模型输入和基坑的最大水平位移作为输出,建立了LS -SVM预测模型,利用该模型对拟开挖基坑进行了变形预测,并将预测结果与BP神经网络模型预测结果进行了比较.结果表明·该模型预测精度较高,且泛化能力强.  相似文献   

6.
7.
为了提高制冷系统故障诊断速度及准确性,提出了基于最小二乘支持向量机(LS-SVM)的制冷系统故障诊断模型,并采用ASHRAE制冷系统故障模拟实验数据进行模型训练与验证.对一台90冷吨(约316 kW)的离心式冷水机组的7类制冷循环典型故障进行了实验.研究结果表明,LS-SVM模型对制冷系统七类故障的总体诊断正确率比支持向量机(SVM)诊断模型、误差反向传播(BP)神经网络诊断模型分别提高0.12%和1.32%;尽管对个别局部故障(冷凝器结垢、冷凝器水流量不足、制冷剂含不凝性气体)的诊断性能较SVM模型的略有下降,但对系统故障的诊断性能均有较大改善,特别是对制冷剂泄漏/不足故障;诊断耗时比SVM模型减少近一半,快速性亦有所改善.可见,LS-SVM模型在制冷系统故障诊断中具有良好的应用前景.  相似文献   

8.
针对支持向量机模型预测大坝变形的核心为选取惩罚因子C和核函数参数σ的问题,以及标准遗传算法可能存在收敛局部小而最后得不到全局最优解、收敛速度慢等缺点,采用改进的自适应遗传算法对参数进行寻优。实例应用表明,与自适应遗传算法的支持向量机模型和统计模型相比,改进的自适应遗传算法的支持向量机模型推广能力和泛化能力更好,从而证明该预测模型具有可行性和实用性。  相似文献   

9.
提出了一种基于粒子群(PSO)算法优化最小二乘支持向量机(LS-SVM)的风电场风速预测方法。以相关性较高的历史风速序列作为输入,建立预测模型,并用粒子群算法优化模型参数。在对未来1 h风速进行预测时,文章所提出的模型比最小二乘支持向量机模型及BP神经网络模型具有较高的预测精度和运算速度。算例结果表明,经粒子群优化的最小二乘支持向量机算法是进行短期风速预测的有效方法。  相似文献   

10.
针对风速序列的周期性和非平稳性,提出了基于小波变换和LS-SVM相结合的风电场风速预测模型,利用小波变换的多分辩分析法对风速序列进行分解,将风速序列投影到不同尺度上.结合LS-SVM的小样本学习能力强和计算简单等特点,将小波分解后的各风速子序列分别采用LS-SVM进行训练和预测,最后将各预测结果进行叠加得到最终的风速预测值.与LS-SVM风速预测方法进行比较,采用该文提出的方法可明显提高短期风速预测的精度,并具有较强的适应性,具有一定的工程应用前景.最后通过具体实例验证了该模型的有效性.  相似文献   

11.
利用回归分析的方法,根据实验数据,拟合出灰分,挥发分,全硫与发热量之间的线性系数,确定成分相关性。基于最小二乘支持向量机(least square-spport vector machine,LS-SVM)建立了电站锅炉能源消耗及排放模型,实现了对排烟温度、飞灰含碳质量分数等模型参数的软测量以及对锅炉效率的预测。  相似文献   

12.
针对传统点预测模型出现的不稳定性问题,提出基于模糊信息粒化的电力系统中光伏出力预测模型。首先运用W. Pedrycz的模糊粒化方法,确定其基本思想,并对数据预测的序列进行模糊信息粒化处理;其次采用最小二乘支持向量机法,通过非线性映射构建最佳的线性回归函数;最后根据非线性惯性权值对自适应粒子群算法参数进行优化,并构建基于模糊信息粒化和最小二乘支持向量机的光伏出力预测功率波动模型。为进一步提升模型稳定性,使用EEMD将光伏数据分解成多个等同的子序列,对波动性较强序列的识别分组粒化,以获得精准预测值。实验结果表明,所提模型能够解决部分随机性与波动性问题,提高整体稳定性,且百分比误差率较小,可广泛应用在现实生活中。  相似文献   

13.
基于EMD和LS-SVM的中长期径流预报   总被引:2,自引:2,他引:2  
提出将EMD与LS-SVM模型相耦合的新的径流中长期预测方法,采用EMD分解年径流序列,应用LS-SVM模型预测和重构IMF分量.基于岷江紫坪铺水文站年径流资料预测和检验该模型,并与单独的LS-SVM模型及BP神经网络模型比较.实例结果表明,该方法预报精度高,预测径流行之有效.  相似文献   

14.
为提高水库来水量的预测精度,提出了一种基于最小二乘支持向量机(LS-SVM)的来水量预测模型。实例应用结果表明,该模型预测能力强、预测精度高,其预测精度明显高于BP模型,为来水量预测提供了一种可靠、有效的方法。  相似文献   

15.
为安全监控大坝,以棉花滩大坝为例,提出了一种多测点监测数据的方法,通过对环境变量和大坝效应量之间关系的分析,将多测点监测量转换为几个相互独立的潜变量来实现多测点数据的降噪和减缩,并采用最小二乘支持向量机(LS-SVM)建立环境变量因子对潜变量的预测模型,以实现对大坝状态的监控。  相似文献   

16.
鉴于支持向量机(SVM)存在结构稀疏化不足、缺乏概率信息等缺陷,将性能更具优势的相关向量机(RVM)理论引入到大坝变形预测的应用中。选择高斯径向基函数作为RVM模型的核函数,核参数用基于模拟退火的混合粒子群算法(SAPSO)进行寻优,进而建立SAPSO-RVM回归预测模型。实例应用结果表明,RVM模型的向量数量远小于SVM模型,在保持良好泛化能力的前提下计算结构得到简化,混合粒子群算法相较于一般粒子群算法其全局寻优能力也有所提高,SAPSO-RVM模型回归预测精度较高。  相似文献   

17.
针对单一模型在大坝变形预测中精度不高的问题,提出一种基于LS-SVM—马尔科夫模型的预测方法,即基于LS-SVM模型的预测结果,利用马尔科夫模型对其进行误差修正,从而提高了预测精度。通过对某拱坝变形的预测分析,并与LS-SVM模型预测结果进行对比,发现LS-SVM—马尔科夫模型的预测结果较符合实际情况,该模型具有更高的预测精度和优越性。  相似文献   

18.
为提高传统GM-AR模型预测精度,提出一种基于整体最小二乘(TLS)的非线性GM-AR变形预测模型。首先利用TLS参数估计的GM(1,1)模型提取变形序列中具有确定性的趋势项,然后再对剔除趋势项后的随机部分建立TLS参数估计的AR预测模型,最后叠加两者的预测结果作为最终的变形预测结果,并以三峡库区某高边坡的变形数据为例对模型进行验证。结果表明,相对于传统最小二乘(LS)参数估计的非线性GM-AR模型及GM(1,1)、AR两个单一模型,基于TLS的非线性GM-AR模型的预测精度更高,可在变形预测中应用。  相似文献   

19.
提出了一种基于最小二乘支持向量机理论及可视化火焰检测系统的燃煤电站锅炉负荷预测的方法.利用可视化火焰检测系统对300 MW燃煤锅炉降负荷过程的燃烧火焰及温度场进行了实时测试.通过测试,利用数字图像处理技术提取了燃烧火焰图像特征参数、由双色法测温原理计算得到了其温度场,采用最小二乘支持向量机建立了锅炉负荷预测模型并进行了校验.结果表明.该预测模型泛化能力强、预测精度高,从而为把燃烧火焰图像及温度场信息作为控制信号,进而引入电站锅炉燃烧控制系统提供了技术支持.  相似文献   

20.
针对目前最小二乘支持向量机选取核参数和惩罚因子的各种方法尚存在着一定的局限性,文章采用果蝇优化算法对参数进行优化选择,提出了基于果蝇优化算法与最小二乘支持向量机结合的风速混合预测方法。对新疆某风电场为期5天的240个(采样间隔0.5 h)实测风速值进行了仿真测试,利用建立的预测模型,对第5天的风速值进行预测,预测结果的平均绝对百分比误差仅为8.32%。将其与单纯的LS-SVM模型和基于网格搜索优化的LS-SVM模型的预测结果作了对比,仿真结果验证了基于果蝇优化算法和最小二乘支持向量机混合预测模型的可行性和果蝇算法对最小二乘支持向量机参数优化的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号