首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the Universal Product Code (UPC) has remained unchanged since its implementation in the 1970s, new technology and consumer package good layouts have started to change the UPC layout. The purpose of this study was to compare how upper extremity muscle activity was altered when scanning consumer packaged goods enhanced with an imperceptible barcode or a multi-sided UPC layout. Seventeen experienced cashiers participated in this study. Electromyography of four bilateral upper extremity muscles was recorded when scanning individual consumer packaged goods and a mock grocery cart. Scanning time and integrated electromyography were compared between the packages enhanced with an imperceptible barcode or the multi-sided barcodes versus the traditional barcodes. Participants were more efficient when scanning packages with the altered barcodes compared to the traditional barcode. Scanning the individual consumer packaged goods resulted in lower peak muscle activity for the shoulder muscles and elbow flexors when using packages enhanced with the imperceptible barcode. When extrapolated over a 4-h shift, the packages enhanced with the imperceptible barcode lowered upper extremity cumulative muscle activity measured muscles; however, the multi-sided layout only demonstrated a reduced muscular activity for the trapezius and left forearm. Future work must continue to assess grocery scanning practices, training, and other alternative scanning practices, such as hand scanners and self-checkout stands.  相似文献   

2.
3.
《Ergonomics》2012,55(12):1525-1537
Abstract

In order to analyse the effect of changing the sitting posture on the level of neck and shoulder muscular activity, an electromyographic (EMG) study of ten healthy experienced female workers from an electronics plant was undertaken. A standardized, simulated task was performed in eight different sitting work postures. Using surface electrodes, the level of muscular activity was recorded as normalized, full-wave rectified low-pass filtered EMG. The results showed that the whole spine flexed sitting posture gave higher levels of static activity in several neck and shoulder muscles than the posture with a straight and vertical spine, which in turn gave higher levels than the posture with slightly backward-inclined thoraco-lumbar spine.  相似文献   

4.
《Ergonomics》2012,55(13):1365-1385
This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from a 0.05 m height with the feet behind the box, squat lifting resulted in 19.9% (SD 8.7%) higher net moments (p < 0.001) and 17.0% (SD 13.2%) higher compression forces (p < 0.01) than stoop lifting. This effect was reduced to 12.8% (SD 10.7%) for moments and a non-significant 7.4% (SD 16.0%) for compression forces when lifting with the feet beside the box and it disappeared when lifting from 0.5 m height. Differences between squat and stoop lifts, as well as the interaction with lifting height, could to a large extent be explained by changes in the horizontal L5/S1 intervertebral joint position relative to the load, the upper body acceleration, and lumbar flexion. Rotating the knees outward during squat lifts resulted in moments and compression forces that were smaller than in squat lifting but larger than in stoop lifting. Shear forces were small ( < 300 N) at the L4/L5 joint and substantial (1100 – 1400 N) but unaffected by lifting technique at the L5/S1 joint. The present results show that the effects of lifting technique on low back loading depend on the task context.  相似文献   

5.
Carpenters and other construction workers who install drywall have high rates of strains and sprains to the low back and shoulder. Drywall is heavy and awkward to handle resulting in increased risk of injury. The purpose of this study was to evaluate several low-cost coupling tools that have the potential to reduce awkward postures in drywall installers. Five coupling tools were evaluated using the Lumbar Motion Monitor that measures trunk kinematics and predicts probability of low back disorder group membership risk (LBD risk). Workers answered surveys about their comfort while using each tool. The results indicate that use of the 2-person manual lift and the J-handle provide the best reduction in awkward postures, motions, low back sagittal moment, and LBD risk. The two-person manual lift appears to be the safest method of lifting and moving drywall, though using the two-person J-handle also significantly reduces injury risk. Given that carpenters are skeptical about using equipment that can get in the way or get lost, a practical recommendation is promotion of two-person manual lifting. For single-person lifts, the Old Man tool is a viable option to decrease risk of MSDs.  相似文献   

6.
Shoulder musculoskeletal disorders (MSD) are frequently associated with the work activities that demand forceful arm exertions in pushing and pulling directions. Considering the ability of shoulder joint to exert forces in nearly any direction, our understanding of the shoulder muscles activation as affected by pushing and pulling exertions is limited. In this study the activation of seven shoulder muscles were studied for 10 male participants during pulling exertions performed in five directions (pull right, pull left, pull back, pull down and pull up) using three force levels (22.24 N, 33.36 N and 44.48 N). Exertions performed in pulling right and pulling up directions produced higher activation and received higher perceived exertion ratings than the exertions performed in the other directions. Rotator cuff and middle deltoid muscles activation were consistently higher during pulling up and pulling right exertions compared to the other muscles. A high correlation was found between the activation of rotator cuff and deltoid muscles and the perceived exertion ratings. The rotator cuff and middle deltoid muscles activation observed during the pulling up and pulling right exertions can be explained by the concavity compression mechanism which stabilizes the glenohumeral joint of shoulder.Relevance to industryThe muscle activation data expressed in terms of Maximum Voluntary Contraction (MVC) and perceived exertion ratings are widely used by the ergonomic practitioners to design and/or evaluate workplace exertions. This study provides such data for several shoulder muscles during pulling exertions performed under different conditions.  相似文献   

7.
Custodians engage in strenuous manual labour throughout their workday. Uncertainty exists on whether kinematics or muscle activation changes as workers progress through their shift. The purpose of this study was to examine muscle activation and upper extremity kinematics during typical custodial tasks performed at the start and end of the work shift. Electromyography (EMG) of 8 torso and upper extremity muscles and motion capture of the corresponding region were collected for 10 custodial participants while they completed garbage removal, dry mopping, and vacuuming tasks at the start and end of a work shift. The start of shift assessment demonstrated larger anterior deltoid, posterior deltoid and extensor digitorum activation by up to 12.6 %maximal voluntary contraction (%MVC) (p < 0.001–0.023). Task affected mean and peak EMG in all muscles except flexor digitorum (p < 0.001–0.0293), and the greatest activation was found during vacuuming (peak <55%MVC in anterior and middle deltoid) and the heaviest garbage removal task (84% MVC peak in upper trapezius). Mopping created the lowest amounts of activation for almost all muscles. Joint range of motion (p < 0.001–0.031) in the shoulder was highest in vacuuming, while trunk flexion was largest in garbage removal tasks. This work replicated common custodial tasks in a laboratory, using actual custodial workers at times relevant to their typical work shifts. The information presented is useful for ergonomists, work tasks designers and custodial administration staff to develop guidelines for injury prevention.  相似文献   

8.
Pushing and pulling account for nearly half of all manual material handling tasks. The purpose of this investigation was to develop a 3-D spatial muscle activity map for the right upper extremity during pushing and pulling tasks. Nineteen males performed 140 ramped directional hand exertions (70 push; 70 pull) at locations along three axes aligned with the anatomical planes. Electromyography (EMG) of 14 sites on the right upper extremity was recorded. Two directional 3-way repeated measures ANOVAs assessed the influence of hand position on EMG. Hand position and exertion direction influenced total and individual muscle demand. During pulling exertions, all three hand location parameters influenced total muscle activity (p < 0.001) and similarly in pushing exertions (p < 0.002), though less pronounced than in pulling. Data were used to create equations to predict the muscle activity of untested hand locations for novel work design scenarios.  相似文献   

9.
Accurate and reliable low back morphological data such as the cross-sectional area (CSA) of the erector spinae muscle (ESM) is vital for biomechanical modeling of the lumbar spine to estimate spinal loading and enhance the understanding of injury mechanisms. The objective of the present study is to enhance the current database regarding ESM sizes by studying with larger sample sizes, collecting data from live subjects, using high resolution MRI scans, using computerized, reliable, and repeatable measurement techniques, and analyzing data from three inter-vertebral disc (IVD) levels for both genders. A total of 163 subjects (82 males and 81 females) were included in the study. CSAs of both right and left ESMs were measured from axial-oblique MRI scans using architectural design software. The average CSA of the ESM was 23.50, 24.22, and 24.33 cm2 for females and 30.00, 28.28, and 24.60 cm2 for males at the L3/L4, L4/L5, and L5/S1 levels, respectively. Results agree with some studies, but generally larger than most previous studies, possibly due to differences in sampling (sample size, subject characteristics: age, anthropometrics, cadavers, etc.), measurement techniques (scanning technology, scanning plane, scanning posture, different IVD levels), or muscle definitions.Relevance to industryLifting tasks are very common in occupational settings and associated with low back pain. Accurate and reliable low back muscle size data is of importance to produce more efficient low back biomechanical models to better understand the loading mechanism in lifting tasks and to minimize low back pain risk regarding the lifting task. However, available low back muscle size data are quite limited. This study fills part of this gap by providing data from a large sample population of live subjects, multiple levels, both genders, high resolution MRI scans, reliable and repeatable measurement technique. The updated low back muscle size data presented in this paper can be used by biomechanical modelers to improve current low back biomechanical models.  相似文献   

10.
Whole body vibration (WBV) has been recognized as a main risk factor for low back pain (LBP) in coal mining activities. Heavy equipment operators in nickel mining may be exposed to a higher LBP risk due to the land condition of the overburden overlying nickel deposits, which is less stable than that of coal deposits. This report summarizes the efforts of a nickel company in managing LBP complaints among mining operators. The programs included risk assessment and mitigation, musculoskeletal complaint management, LBP training, and macroergonomic intervention. These programs were integrated into the occupational health management system of the company. Within a 3-year period, a decrease in LBP-related sick leave was reported. The present report shows how ergonomic programs may help to manage LBP and could be extended to other musculoskeletal cases.  相似文献   

11.
The primary objective of the present study was to quantify the relative effect of the magnitude and direction of the exerted push force and of trunk inclination on the mechanical load at the low back using a regression analysis for correlated data. In addition, we explored the effects of handle height and type of pushing activity (standing or walking) on the magnitude and direction of exerted forces, trunk inclination, and low back loading when pushing a four-wheeled cart on a treadmill. An experimental setup was designed in which nine participants pushed a four-wheeled cart on a treadmill. Kinematics and reaction forces on the hand were measured to calculate the net moment at the L5–S1 intervertebral disc. Results show that the magnitude and direction of the exerted push force and the trunk inclination significantly and independently affect low back load. It is concluded that for the ergonomic evaluation of pushing tasks, the inclination of the trunk should be considered, in addition to the magnitude and direction of exerted forces.

Relevance to industry

Pushing carts is a common activity for a considerable part of the workforce and has been associated with musculoskeletal complaints. This paper shows that not only the magnitude of exerted forces determines the low back load but also the direction of the exerted forces and the inclination of the trunk should be considered for ergonomic evaluation.  相似文献   

12.
Masons working with concrete masonry unit block have high rates of work-related musculoskeletal disorders to the low back and shoulders associated with repetitively lifting and buttering heavy block. A new material, autoclaved aerated concrete, may reduce the risk of shoulder and back injury but, ergonomic evaluation is needed. This study evaluated shoulder exposure parameters, low back stress, and worker perceptions in two groups of journey level masons, one using CMU and the other using AAC block. Results indicate that for the left arm AAC masons spent significantly more time than CMU masons in static (38.2% versus 31.1%, respectively), and less time in slow motions (48.2% versus 52.2%, respectively) and faster motions (13.6% versus 16.7%, respectively) (p < 0.05). CMU masons had significantly greater shoulder and low back pain (p = 0.009) and they held block significantly longer than AAC masons (p < 0.001). Low back compressive forces were high for both materials. Masons handling AAC demonstrated less left upper extremity stress but both materials were estimated to be hazardous to the low back.  相似文献   

13.
《Ergonomics》2012,55(4):385-391
Abstract

This paper discusses the problem of assessing visibility in lighted streets find some inadequacies of existing lighting installations.

Two investigations are reported : the first on the effect on brightness and ‘ patchiness ’ of the spacing of lighting installations on roads of different widths. The second compares two cut-off and non-cutoff lighting installations in terms of visibility and glare.  相似文献   

14.
《Ergonomics》2012,55(6):1172-1183
Prolonged static strain on the muscles of the neck-shoulder region is believed to be linked to the development of musculoskeletal problems. To quantify the static strain on the basis of EMG, the level as well as the duration of the muscle load should be analysed on temporal basis. In this paper, some methods for the temporal analysis of EMG recordings are proposed with an aim of quantifying the long-term static strain on the muscle. The use of nonlinear median prefilters for decomposing the EMG activity according both to amplitude level and duration of the activity at different levels is proposed. The prefiltering methods were also evaluated using laboratory studies. The main aim of the studies was to compare the estimation errors between EMG and force for different types of prefilters especially when the static load component was analysed. The average estimation error for sequences having a duration longer than 1 s was found to be 8% of MVC in the case of trapezius muscle and 14% of MVC in the case of biceps brachii muscle. Linear relation was found on the basis of linear least squares curve fitting to give the largest correlation coefficients between EMG and force, when the static load component was analysed.  相似文献   

15.
《Ergonomics》2012,55(4):401-420
Four consoles were designed identical in every respect except for the display and control components used in their construction. Two levels of illumination were employed. Sixteen fit male subjects, age range 19 to 50, were tested. Subjects were asked to respond to signals presented in a predetermined order by operating a control, e.g. a push-button or Post Office key. Reaction times weretaken using a simple time event recorder producing five-hole punched paper tape output. A note was taken of errors of operation. Some 30,000 reaction times were taken and analysed using a five-factor analysis of variance computer program. A similar rank order of the components was found for speed of response and accuracy of operation. Within the limits of the experiment a trans-illuminated push-button was operated with the lowest reaction time and with least error. Some factors affecting the design of push-button controls and their associated displays are discussed.  相似文献   

16.
《Ergonomics》2012,55(7):1110-1126
Most existing evidence regarding the effects of age on muscular fatigue has focused on prolonged isometric contractions, repeated maximum dynamic contractions and individuals beyond traditional retirement age (>65 years). In the present study, age-related differences in muscle fatigue during submaximal dynamic efforts were examined. There were 24 younger (18–25 years) and 24 older (55–65 years) participants, all of whom were healthy and active, with equal numbers of each gender within each age group. Participants performed repetitive, intermittent shoulder abductions until exhaustion, at peak moments of 30% and 40% of individual maximum voluntary isokinetic contraction (MVIC) and with cycle durations of 20 and 40 s. Fatigue development was determined based on changes in MVIC, electromyographic (EMG) signals and ratings of perceived discomfort (RPD). Following the exhaustive exercises, strength recovery was monitored using a series of MVICs over a 15-min period. Results indicated the existence of an age-related fatigue resistance, with the older group demonstrating significantly slower rates of MVIC decline and RPD increase and smaller modifications in EMG-based fatigue measures. These age effects were generally more pronounced at the higher effort level. Main effects of effort level and cycle duration were also significant, while gender effects appeared to be marginal. Rates of strength recovery were not significantly influenced by age. In addition, the utility of standard EMG-based fatigue measures was assessed. Findings indicated that time-dependent changes in static and dynamic EMG-based measures were roughly comparable in terms of sensitivity and variability, supporting the use of standard EMG analyses for fatigue monitoring during intermittent dynamic contractions.  相似文献   

17.
The primary objective of this study was to quantify the effect of dynamic cart pushing exertions on the biomechanical loading of shoulder and low back. Ten participants performed cart pushing tasks on flat (0°), 5°, and 10° ramped walkways at 20 kg, 30 kg, and 40 kg weight conditions. An optoelectronic motion capturing system configured with two force plates was used for the kinematic and ground reaction force data collection. The experimental data was modeled using AnyBody modeling system to compute three-dimensional peak reaction forces at the shoulder complex (sternoclavicular, acromioclavicular, and glenohumeral) and low back (lumbosacral) joints. The main effect of walkway gradient and cart weight, and gradient by weight interaction on the biomechanical loading of shoulder complex and low back joints was statistically significant (all p < 0.001). At the lumbosacral joint, negligible loading in the mediolateral direction was observed compared to the anterioposterior and compression directions. Among the shoulder complex joints, the peak reaction forces at the acromioclavicular and glenohumeral joints were comparable and much higher than the sternoclavicular joint. Increased shear loading of the lumbosacral joint, distraction loading of glenohumeral joint and inferosuperior loading of the acromioclavicular joint may contribute to the risk of work-related low back and shoulder musculoskeletal disorder with prolonged and repetitive use of carts.  相似文献   

18.
《Ergonomics》2012,55(7):714-730
With the increasing use of video display terminals (VDTs), there is growing concern over the corresponding increase in the number of health problems reported. Although much research has focused on identifying the optimal screen height, there is to date no consensus. This study aimed to investigate the effect of prolonged (89 min) VDT work at four different screen heights on head-neck posture, muscle activity and the development of muscle fatigue. The results show that lowering screen height, starting from 15 cm above the baseline (i.e. top of the screen level with eye height while sitting), decreased the ear-eye angle, increased the viewing angle, increased the viewing angle relative to the ear-eye line, and increased the muscle activity of the neck extensor muscles. There were also some significant time effects on postural angles and muscle activity. In this study there were only rare occurrences of muscle fatigue, defined as a simultaneous increase in EMG amplitude and a shift of the EMG power spectrum to lower frequencies. Muscle activity increased significantly in some muscles and for certain screen heights.  相似文献   

19.
《Ergonomics》2012,55(5-6):693-707
Abstract

Improper posture is considered as one of the causes for low back pain. This study focused attention on low back pain that occurs when people adopt a dynamic posture. Low back pain in attendants was investigated as a typical example of low back pain in a dynamic posture. When multi-dimensional quantification III was applied to the results of the investigation, low back pain was found to occur in six postural patterns: bending knee posture, the posture of lifting and holding a light object, the posture of tilting the trunk, working posture to push a cart, the posture of turning or lifting a cart, and the posture of stretching. This survey found that low back pain frequently occurred when an unexpected load was imposed on the lumbar region and experiments were conducted to simulate the unexpected loading of this region. The experimental results showed that lumbar muscular activity was not fast enough to cope with the load and resulted in an increased swaying of the trunk. This swaying was considered to induce a load on the lumbar region. It is concluded that low back pain can be prevented if an appropriate preparatory set is taken.  相似文献   

20.
《Ergonomics》2012,55(15):1749-1769
The purpose of this study was to examine the interfering effects of physical and mental tasks on shoulder isometric strength in different postures. Fifteen volunteers (seven women, eight men) performed a series of isometric shoulder exertions at 30°, 60° and 90° of both shoulder flexion and abduction alone and with the addition of a 30% grip force, a mental task (Stroop test) and both additional tasks simultaneously. The shoulder tasks were completed either at maximal intensity, or while maintaining a shoulder posture without any additional effort. Surface electromyography (EMG) from seven muscles of the shoulder girdle and shoulder moment were collected for each 6 s shoulder exertion. When normalized to maximum exertion, no differences were found between genders and no differences existed between conditions when subjects maintained each posture without exerted force. In the maximal shoulder exertion trials, an increase in shoulder angle (in either plane) resulted in an increase in EMG in most muscles, while shoulder moment decreased in flexion and remained constant in abduction. Shoulder moments and muscle activation were greatest in the shoulder exertion alone condition followed by adding a 30% grip and the Stroop test, with the addition of both tasks further reducing the exerted shoulder moment and EMG. However, muscle activity did not always decrease with shoulder strength and remained elevated, indicating a complex coactivation pattern produced by an interfering role of the tasks. Overall, it was found that a mental task can have the same or greater effect as a concurrent grip and should be considered when assessing muscular loading in the workplace, as typical biomechanical modelling may underestimate internal loads. The results not only provide valuable shoulder strength data but also practical strength values, depending on additional tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号