首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
We have investigated the effect of pentacene-doped poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) [PEDOT:PSS] films as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the amount of pentacene and the annealing temperature of pentacene-doped PEDOT:PSS layer, the changes of performance characteristics were evaluated. Pentacene-doped PEDOT:PSS thin films were prepared by dissolving pentacene in 1-methyl-2-pyrrolidinone solvent and mixing with PEDOT:PSS. As the amount of pentacene in the PEDOT:PSS solution was increased, UV-visible transmittance also increased dramatically. By increasing the amount of pentacene in PEDOT:PSS films, dramatic decreases in both the work function and surface resistance were observed. However, the work function and surface resistance began to sharply increase above the doping amount of pentacene at 7.7 and 9.9 mg, respectively. As the annealing temperature was increased, the surface roughness of pentacene-doped PEDOT:PSS films also increased, leading to the formation of PEDOT:PSS aggregates. The films of pentacene-doped PEDOT:PSS were characterized by AFM, SEM, UV-visible transmittance, surface analyzer, surface resistance, and photovoltaic response analysis.  相似文献   

2.
The effect of 3‐glycidoxypropyltrimethoxysilane (GOPS) content in poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) dispersions on the properties of films spun cast from these formulations is investigated. It has been found out that the concentration of GOPS has a tremendous, yet gradual impact on the electrical, electrochemical, and mechanical properties of the PEDOT:PSS/GOPS films and that there is an optimum concentration which maximizes a particular feature of the film such as its water uptake or elasticity. The benefits of aqueous stability and mechanical strength with GOPS are to be compensated by an increase in the electrochemical impedance. GOPS aids obtaining excellent mechanical integrity in aqueous media with still highly conducting properties. Moreover, active devices like organic electrochemical transistors that contain 1 wt% GOPS, which is a concentration that leads to film with high electrical conductivity with sufficient mechanical stability and softness, exhibit steady performance over three weeks. These results suggest that variations in the concentration of such an additive like GOPS can enable a facile co‐optimization of electrical and mechanical properties of a conducting polymer film for in vivo bioelectronics application.

  相似文献   


3.
A new strategy for the selective coating of tin sulfide (SnS) on the surface of moth‐eye patterned (MEP) conducting polymer film is studied by considering the optical properties of the antireflective moth‐eye pattern and flexibility of polymer films. The semiconductor SnS is selectively coated on the surface of MEP microdomes of poly(3,4‐ethylenedioxythiophene) poly(styrene‐sulfonate) (PEDOT:PSS) film. The SnS coated MEP film is obtained by using pore selectively SnS thin layer functionalized polystyrene honeycomb‐patterned porous (HCP) film as a template. Aqueous PEDOT:PSS solution is poured on the SnS functionalized HCP films and detached for the fabrication of SnS coated MEP films. The films show a satisfactory photo‐responsive property under solar stimulated light illumination due to the antireflective MEP structure of PEDOT film and homogenous SnS coating on the surface of the conducting polymer.  相似文献   

4.
Poly(3,4-ethylene dioxythiophene) (PEDOT) is a promising electrochromic material in many practical application, such as smart windows and displays. However, there are still difficulties in currently realizing green manufacturing, high coloration efficiency, and rapid response. Herein, in-situ electrochemical polymerization of PEDOT:PSS/Reline films was suggested in aqueous solution. Deep eutectic solvents (DES) composed of choline chloride and urea (Reline) were employed as green solvents in reaction system and used as dopants for the PEDOT:PSS. The as-prepared PEDOT:PSS/Reline films exhibited remarkable electrochromic properties, including great ion diffusion coefficient, fast reaction time (coloration response time was 1.4 s), prominent transmittance modulation (38%), high coloration efficiency (223 cm2/C) and excellent cyclic stability. Impressively, doping of Reline cannot only provide a green polymerization environment, but also significantly boost the electrochromic properties.  相似文献   

5.
This communication reports on a versatile and substrate-agnostic method to tune the surface chemistry of conducting polymers with the aim of bridging the chemical mismatch between bioelectronic devices and biological systems. As a proof of concept, the surface of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is grafted with a short-chain oligoethylene glycol monolayer to favor the formation of cell-derived supported lipid bilayers (SLBs). This method is tuned to optimize the affinity between the supported lipid bilayer and the conducting polymer, leading to significant improvements in bilayer quality and therefore electronic readouts. To validate the impact of surface functionalization on the system's ability to transduce biological phenomena into quantifiable electronic signals, the activity of a virus commonly used as a surrogate for SARS-CoV-2 (mouse hepatitis virus) is monitored with and without surface treatment. The functionalized devices exhibit significant improvements in electronic output, stemming from the improved SLB quality, therefore strengthening the case for the use of such an approach in membrane-on-a-chip systems.  相似文献   

6.
The discrimination of humidity in exhaled breath is of utmost importance to turn breath analysis into an efficient noninvasive tool for early diagnosis or treatment monitoring of several diseases. Herein, by assembling different ratios of the conductive poly(3,4-ethylenedioxythiophene): polystyrene sulfonate with the polymer matrix polyethylene oxide (PEO), humidity chemiresistor-based sensors are designed and investigated. The testing results display a broad relative humidity detection range (6–92%), repeatability, reproducibility, and good reversibility. Meanwhile, the sensors possess good reliability for distinct temperatures and in the presence of typical volatile organic compounds found in human exhaled air. The hygroscopic idiosyncrasy of PEO is attributed to be the main responsible for the high sensibility toward humidity. In a proof-of-principle for detection of respiration humidity, the outcome shows the ability of the chemiresistors to detect the humidity variation in a real case of breath exposure up to 2 s intervals. The 30 d trial of stability readings shows a standard deviation of only 2.6%. These sensing devices appear as a new array component able to distinguish moisture from biomarkers of diagnosed diseases in breath analysis.  相似文献   

7.
Organic/inorganic heterostructures are an emerging and interesting field of research for optoelectronics. In this work, an efficient organic/inorganic hybrid heterojunction between PEDOT:PSS and n-type Silicon has been fabricated for optoelectronic applications. Samples with varying thickness of PEDOT:PSS were prepared by spin coating technique and the electrical conductivity of organic layers was modified using DMSO as additive. Post fabrication, the hybrid heterostructures were treated with HNO3 vapor so as to enhance the conductivity of the organic layer. Surface treatment with HNO3 was found to lower the roughness of the organic layer and enhance the transparency of the layer. IV characteristics reveal optimized behavior of HNO3 treated PEDOT:PSS layer with a low Ideality factor (n~3.2) and a barrier height (ΦB) of 0.8 eV. The findings of the study provide a promising efficient method to enhance the electrical and device properties of PEDOT:PSS/n-Si heterostructures for optoelectronic applications. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48952.  相似文献   

8.
Conductive textiles with exceptional electrical properties have been prepared by coating the conjugated polymer, poly(3,4‐ethylenedioxyphiophene)‐polystyrenesulfonate(PEDOT‐PSS), on polyethylene terephthalate (PET) nonwoven fabrics. Phase segregation from covalent bond formation to surface silica particles generates PEDOT‐PSS coated textiles that hold potential for wearable electronics due to the breathability of the fabric, low toxicity, easy processing and lightweight with high current carrying capacity. The conductive textiles were demonstrated for applications such as electrical connections and resistive heating.

  相似文献   


9.
In this study, the effects of different paper substrates on the electrical resistance of conducting polymer films are reported. A novel method of bar coating is used for the fabrication of organic conductive films on various substrates. Solutions to improve the continuity of conductive thin film in order to enhance the electrical properties are demonstrated. In order to compare the capability of these different substrates for a potential use in the organic electronic field, sheet resistance measurements were made. It is emphasized that substrate roughness and surface energy are two fundamental parameters, due to their significant impact on sheet resistance. Two methods to overcome bad paper surface properties are proposed. The first consists in the superimposition of conductive polymer layers and the second in the use of a protective layer.  相似文献   

10.
With the rapid development of wearable smart electronic products, high-performance wearable flexible strain sensors are urgently needed. In this paper, a flexible strain sensor device with Fe NWs/Graphene/PEDOT:PSS material added under a porous structure was designed and prepared. The effects of adding different sensing materials and a different number of dips with PEDOT:PSS on the device performance were investigated. The experiments show that the flexible strain sensor obtained by using Fe NWs, graphene, and PEDOT:PSS composite is dipped in polyurethane foam once and vacuum dried in turn with a local linearity of 98.8%, and the device was stable up to 3500 times at 80% strain. The high linearity and good stability are based on the three-dimensional network structure of polyurethane foam, combined with the excellent electrical conductivity of Fe NWs, the bridging and passivation effects of graphene, and the stabilization effect of PEDOT:PSS, which force the graphene-coated Fe NWs to adhere to the porous skeleton under the action of PEDOT:PSS to form a stable three-dimensional conductive network. Flexible strain sensor devices can be applied to smart robots and other fields and show broad application prospects in intelligent wearable devices.  相似文献   

11.
采用电沉积法在碳钢镀镍一磷合金镀层表面制备了TiO2薄膜,研究了溶液pH值、沉积时间和电流密度对薄膜增重的影响,分析测定了薄膜的成分及表面形貌。所得最佳工艺条件:pH值为4;时间为40min;电流密度为40-50mA/cm^2。在最佳工艺条件下成功制备了与基体结合良好、致密、均匀的TiO2薄膜。浸泡试验表明TiO2薄膜提高了镍一磷合金镀层在质量分数为10%硫酸和10%氯化钠溶液中的耐蚀性。  相似文献   

12.
运用硅烷偶联剂KH-570对纳米TiO2进行有机改性。红外分析表明,改性后的纳米TiO2表面与KH-570以化学键形式结合;透射电镜显示改性后纳米TiO2粒子团聚不明显;沉降试验显示改性纳米TiO2疏水性明显提高。采用桐油、豆油的下脚料制备醇酸树脂,并用三种来源的醇酸树脂与改性前后的纳米TiO2制备醇酸树脂涂料,透射分析改性后的纳米TiO2粒子能很好地分散在树脂中。改性纳米TiO2粒子的加入,使醇酸树脂基涂料的耐酸性、耐磨性等都有明显提高,机械性能也有相应提高。  相似文献   

13.
The development of a novel film fabrication strategy, named demulsification‐induced fast solidification (DIFS), for the rapid fabrication of large‐area polymer films is reported in this study. The polymer films are fabricated through dialysis and dipping processes using emulsions and a demulsifier based on the DIFS method. Furthermore, robust and flexible free‐standing films with controllable thicknesses and functionalities, such as tunable mechanical properties (elongation at break of 350–980% and ultimate tensile strength of 0.21–1.88 MPa); excellent optical properties (optical transmittance greater than 52.03% in the visible region, refractive index of 1.4888 ± 0.0001, and Abbe number of 52.1 ± 1.1); and luminescence properties, are rapidly and easily prepared by mechanical exfoliation based on the DIFS method. The results show that this academic concept and fabrication method will provide support for the design and preparation of functional polymer films that are highly desirable for optical, flexible device, and wearable material applications.  相似文献   

14.
BaTiO3 coating films were prepared from Ba(CH3COO)2–Ti(OC3H7i)4–H2O–CH3COOH–C3H7iOH solutions containing poly(vinylpyrrolidone) (PVP) via single-step, nonrepetitive dip coating. The critical thickness—i.e., the maximum film thickness achieved without crack formation via nonrepetitive dip coating—was successfully increased by incorporation of PVP in the precursor solution. Relatively dense, crack-free BaTiO3 films >1 μm in thickness were achieved via single-step deposition using a solution containing PVP of average molecular weight of 630 000. Incorporation of an excess amount of PVP, however, led to a decrease in the critical thickness. Higher-molecular-weight PVP was more effective in increasing the critical thickness, whereas N-vinyl-2-pyrrolidone monomers did not affect the critical thickness. Stepwise heating of the gel films resulted in increased optical transmittance of the films, accompanied by film densification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号