首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Different phases of iron oxide were obtained by hydrothermal treatment of ferric solution at 200°C with the addition of either KOH, ethylenediamine (EDA), or KOH and EDA into the reaction system. As usually observed, the α-Fe2O3 hexagonal plates and hexagonal bipyramids were obtained for reaction with KOH and EDA, respectively. When both KOH and EDA were added into the reaction system, we observed an interesting phase transformation from α-Fe2O3 to Fe3O4 at low-temperature hydrothermal conditions. The phase transformation involves the formation of α-Fe2O3 hexagonal plates, the dissolution of the α-Fe2O3 hexagonal plates, the reduction of Fe3+ to Fe2+, and the nucleation and growth of new Fe3O4 polyhedral particles.  相似文献   

2.
Hematite (α-Fe2O3) catalysts prepared using the precipitation methods was found to be highly effective, and therefore, it was studied with methane (CH4), showing an excellent stable performance below 500 °C. This study investigates hematite nanoparticles (NPs) obtained by precipitation in water from the precursor of ferric chloride hexahydrate using precipitating agents NaOH or NH4OH at maintained pH 11 and calcined up to 500 °C for the catalytic oxidation of low concentrations of CH4 (5% by volume in air) at 500 °C to compare their structural state in a CH4 reducing environment. The conversion (%) of CH4 values decreasing with time was discussed according to the course of different transformation of goethite and hydrohematites NPs precursors to magnetite and the structural state of the calcined hydrohematites. The phase composition, the size and morphology of nanocrystallites, thermal transformation of precipitates and the specific surface area of the NPs were characterized in detail by X-ray powder diffraction, transmission electron microscopy, infrared spectroscopy, thermal TG/DTA analysis and nitrogen physisorption measurements. The results support the finding that after goethite dehydration, transformation to hydrohematite due to structurally incorporated water and vacancies is different from hydrohematite α-Fe2O3. The surface area SBET of Fe2O3_NH-70 precipitate composed of protohematite was larger by about 53 m2/g in comparison with Fe2O3_Na-70 precipitate composed of goethite. The oxidation of methane was positively influenced by the hydrohematites of the smaller particle size and the largest lattice volume containing structurally incorporated water and vacancies.  相似文献   

3.
Novel magnetic nanohybrids composed of nanomaghemite covered by organic molecules were successfully synthesized at room temperature with different functionalization agents (sodium polystyrene sulfonate, oxalic acid, and cetyltrimethylammonium bromide) in low and high concentrations. Structural, vibrational, morphological, electron energy-loss spectroscopy, magnetic, and Mössbauer characterizations unraveled the presence of mainly cubic inverse spinel maghemite (γ-Fe2O3), whilst X-ray diffraction and 57Fe Mössbauer spectroscopy showed that most samples contain a minor amount of goethite phase (α-FeOOH). Raman analysis at different laser power revealed a threshold value of 0.83 mW for all samples, for which the γ-Fe2O3 to α-Fe2O3 phase transition was observed. Imaging microscopy revealed controlled-size morphologies of nanoparticles, with sizes in the range from 8 to 12 nm. Organic functionalization of the magnetic nanoparticles was demonstrated by vibrational and thermogravimetric measurements. For some samples, Raman, magnetic, and Mössbauer measurements suggested an even more complex core-shell-like configuration, with a thin shell containing magnetite (Fe3O4) covering the γ-Fe2O3 surface, thus causing an increase in the saturation magnetization of approximately 11% against nanomaghemite. Field cooling hysteresis curves at 5 K did not evidence an exchange bias effect, confirming that the goethite phase is not directly interacting magnetically with the functionalized maghemite nanoparticles. These magnetic nanohybrids may be suitable for applications in effluent remediation and biomedicine.  相似文献   

4.
La1 − x Al x FeO3 (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) nanopowders were prepared by polymerization complex method. All prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectrophotometry (UV-vis). The magnetic properties were investigated using a vibrating sample magnetometer (VSM). The X-ray results of all samples show the formation of an orthorhombic phase with the second phase of α-Fe2O3 in doped samples. The crystallite sizes of nanoparticles decreased with increasing Al content, and they are found to be in the range of 58.45 ± 5.90 to 15.58 ± 4.64 nm. SEM and TEM images show the agglomeration of nanoparticles with average particle size in the range of 60 to 75 nm. The FT-IR spectra confirm the presence of metal oxygen bonds of O-Fe-O and Fe-O in the FeO6 octahedra. The UV-vis spectra show strong absorption peaks at approximately 285 nm, and the calculated optical band gaps are found to be in the range of 2.05 to 2.09 eV with increasing Al content. The M-H loop of the pure sample is antiferromagnetic, whereas those of the doped samples tend to be ferromagnetic with increasing Al content. The magnetization, remanent magnetization, and coercive field of the Al-doped sample with x = 0.5 are enhanced to 1.665 emu/g, 0.623 emu/g, and 4,087.0 Oe, respectively.  相似文献   

5.
Magnetic spindle-like Fe3O4 mesoporous nanoparticles with a length of 200 nm and diameter of 60 nm were successfully synthesized by reducing the spindle-like α-Fe2O3 NPs which were prepared by forced hydrolysis method. The obtained samples were characterized by transmission electron microscopy, powder X-ray diffraction, attenuated total reflection fourier transform infrared spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and nitrogen adsorption-desorption analysis techniques. The results show that α-Fe2O3 phase transformed into Fe3O4 phase after annealing in hydrogen atmosphere at 350°C. The as-prepared spindle-like Fe3O4 mesoporous NPs possess high Brunauer-Emmett-Teller (BET) surface area up to ca. 7.9 m2 g-1. In addition, the Fe3O4 NPs present higher saturation magnetization (85.2 emu g-1) and excellent magnetic response behaviors, which have great potential applications in magnetic separation technology.  相似文献   

6.
CO adsorption on FeO x clusters has been characterized by thermal desorption spectroscopy (TDS) and molecular beam scattering. Iron was vapor deposited and oxidized by annealing in O2. The TDS curves consist initially of two peaks indicating formation of γ-Fe2O3/Fe3O4. Increasing the O2 exposure results in one TDS peak and the dominance of α-Fe2O3.  相似文献   

7.
Brush-like α-Fe2O3–ZnO heterostructures were synthesized through a sputtering ZnO seed-assisted hydrothermal growth method. The resulting heterostructures consisted of α-Fe2O3 rod templates and ZnO branched crystals with an average diameter of approximately 12 nm and length of 25 nm. The gas-sensing results demonstrated that the α-Fe2O3–ZnO heterostructure-based sensor exhibited excellent sensitivity, selectivity, and stability toward low-concentration NO2 gas at an optimal temperature of 300 °C. The α-Fe2O3–ZnO sensor, in particular, demonstrated substantially higher sensitivity compared with pristine α-Fe2O3, along with faster response and recovery speeds under similar test conditions. An appropriate material synergic effect accounts for the considerable enhancement in the NO2 gas-sensing performance of the α-Fe2O3–ZnO heterostructures.  相似文献   

8.
Three types of nanostructured systems: xNbO·(1?x)α-Fe2O3, xNbO2·(1?x)α-Fe2O3, and xNb2O5·(1?x)α-Fe2O3 were synthesized by ball milling at different molar concentrations (x=0.1, 0.3, 0.5, and 0.7). The effect of Nb valence and milling time on mechanochemical activation of these systems were studied by X-ray diffraction and the Mössbauer spectroscopy measurements. In general, Nb-substituted hematite was obtained at lower molar concentrations for all Nb oxides. For the NbO–Fe2O3 system the favorable substitution of Fe2+ for Nb2+ in the octahedral sites in the NbO lattice was observed after 12 h milling for x=0.7. In the case of the NbO2–Fe2O3 and Nb2O5–Fe2O3 systems a formation of orthorhombic FeNbO4 compound was observed, in which Fe3+ cations were detected. For the highest concentration of NbO2 (x=0.7) iron was completely incorporated into the FeNbO4 phase after 12 h milling. The molar concentrations of x=0.3 and 0.5 were the most favorable for the formation of ternary FeNbO4 compound in the Nb2O5–Fe2O3 system. Influence of ball milling on thermal behavior of the powders was investigated by simultaneous DSC–TG measurements up to 800 °C.  相似文献   

9.
A systematic study was undertaken to investigate the effects of the initial oxidation degree of iron on the bulk phase composition and reduction/carburization behaviors of a Fe–Mn–K/SiO2 catalyst prepared from ferrous sulfate. The catalyst samples were characterized by powder X-ray diffraction (XRD), Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS) and H2 (or CO) temperature-programmed reduction (TPR). The Fischer–Tropsch synthesis (FTS) performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the fresh catalysts are mainly composed of α-Fe2O3 and Fe3O4, and the crystallite size of iron oxides is decreased with the increase of the initial oxidation degree of iron. The catalyst with high content of α-Fe2O3 in its as-prepared state has high content of iron carbides after being reduced in syngas. However, the catalyst with high content of Fe3O4 in its as-prepared state cannot be easily carburized in CO and syngas. FTS reaction study indicates that Fe-05 (Fe3+/Fetotal = 1.0) has the highest CO conversion, whereas Fe-03 (Fe3+/Fetotal = 0.55) has the lowest activity. The catalyst with high CO conversion has a high selectivity to gaseous hydrocarbons (C1–C4) and low selectivity to heavy hydrocarbons (C5+).  相似文献   

10.
We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing.  相似文献   

11.
We present a different strategy for synthesizing the Au-γ-Fe2O3 bifunctional nanoparticle by using a larger (50 nm) Au nanoparticle as the core surrounded by smaller (10 nm) γ-Fe2O3 nanoparticles. The synthesis of the composite nanoparticles is quite facile based on a simple redox process whereby Fe2+ is used to reduce Au3+. The morphology and composition of the product is measured by transmission electron microscopy, X-ray powder diffraction and UV–vis spectroscopy. We demonstrate the utility of these as-prepared Au-γ-Fe2O3 nanoparticles by showing they can be used to separate proteins in solution. For example, bovine serum is efficiently removed from an aqueous solution with the simple addition of the NPs and application of a small magnet. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis is performed to evaluate the fidelity and efficiency of the protein separation procedure.  相似文献   

12.
P(AN-co-VAc)/Fe2O3 core-shell nanocapsules were synthesized by miniemulsion polymerization and P(AN-co-VAc)/Fe2O3@PEDOT core-shell structure was constituted by oxidative polymerization. Homogeneous nanofibers were obtained from the core-shell nanocapsules. Characterizations were performed by XRD, GPC, UV-vis, and FTIR-ATR. SEM, AFM, and TEM. Molecular weight and Tg of the nanocapsules were effected by the increase in γ-Fe2O3 NPs. Nanofiber resistance (Rnfb) drastically decreased from 2700 to 110 kΩ.cm2 by the inclusion of γ-Fe2O3 NPs into the nanocapsules 8.3 kΩ.cm2 obtained after coating with PEDOT. The electrochemical Impedance results were fitted to models of [R (Q(R (CR)))] and [R (Q(R (QR)))], respectively.  相似文献   

13.
2D porous α-Fe2O3 nanosheets and 1D porous FexOy nanotubes were synthesized using electrospinning technique under different conditions. XRD results show that the α-Fe2O3 nanosheets are pure α-Fe2O3 phase, and the FexOy nanotubes are mainly composed of α-Fe2O3 phase accompanied by weak Fe3O4 phase. The EDX mappings demonstrate that the elements of O and Fe were uniformly distributed in nanosheets and nanotubes. The valence of iron ion is pure 3?+ in the α-Fe2O3 nanosheets, and it shows 3?+ with a small amount of 2?+ in the FexOy nanotubes. Magnetic properties of the synthesized samples were studied by vibrating sample magnetometer and Mössbauer spectrometer, the results show that the α-Fe2O3 nanosheets have the room temperature ferromagnetism and the FexOy nanotubes have a higher saturation magnetization of 18.91?emu/g. Mössbauer spectrometer proved further the microstructure of nanosheets and nanotubes, which are consistent with the results of XPS. Our results will be helpful for the application of nanoporous materials.  相似文献   

14.
Cancers are a major challenge to health worldwide. Spinel ferrites have attracted attention due to their broad theranostic applications. This study aimed at investigating the antimicrobial, antibiofilm, and anticancer activities of ebselen (Eb) and cerium-nanoparticles (Ce-NPs) in the form of ZnCexFe2−XO4 on human breast and colon cancer cell lines. Bioassays of the cytotoxic concentrations of Eb and ZnCexFe2−XO4, oxidative stress and inflammatory milieu, autophagy, apoptosis, related signalling effectors, the distribution of cells through the cell-cycle phases, and the percentage of cells with apoptosis were evaluated in cancer cell lines. Additionally, the antimicrobial and antibiofilm potential have been investigated against different pathogenic microbes. The ZOI, and MIC results indicated that ZnCexFe2−XO4; X = 0.06 specimen reduced the activity of a wide range of bacteria and unicellular fungi at low concentration including P. aeruginosa (9.5 mm; 6.250 µg/mL), S. aureus (13.2 mm; 0.390 µg/mL), and Candida albicans (13.5 mm; 0.195 µg/mL). Reaction mechanism determination indicated that after ZnCexFe2−xO4; X = 0.06 treatment, morphological differences in S. aureus were apparent with complete lysis of bacterial cells, a concomitant decrease in the viable number, and the growth of biofilm was inhibited. The combination of Eb with ZFO or ZnCexFe2−XO4 with γ-radiation exposure showed marked anti-proliferative efficacy in both cell lines, through modulating the oxidant/antioxidant machinery imbalance, restoring the fine-tuning of redox status, and promoting an anti-inflammatory milieu to prevent cancer progression, which may be a valuable therapeutic approach to cancer therapy and as a promising antimicrobial agent to reduce the pathogenic potential of the invading microbes.  相似文献   

15.
《Ceramics International》2023,49(18):30019-30028
In the present contribution, p-n type heterojunction α-Fe2O3/Cr2O3 S-scheme system photocatalyst has been fabricated utilizing a sol-gel approach with assisted nonionic surfactant for a highly effective H2 evolution rate under visible illumination. Pt NPs have been reduced by photodeposition during the photocatalytic reaction to collect Pt@α-Fe2O3/Cr2O3 finally. XRD analysis of Fe2O3/Cr2O3 nanocomposites verified the construction of Fe2O3 and Cr2O3 with rhombohedral phases. TEM images of Cr2O3 NPs were almost spherical and uniform in shape and size (20 ± 5 nm), and very small Fe2O3 NPs (3-5 nm) were distributed on the mesoporous Cr2O3 networks. The obtained α-Fe2O3/Cr2O3 photocatalyst exhibited noteworthy photocatalytic H2 evolution with high efficiency and stability for 45 h. Interestingly, the photocatalytic H2 evolution rate gradually boosted with the extent of Fe2O3 percentage up to 15% and its rate of 2215.4 μmol g-1h-1, which was fostered 7.25 folds larger than that of Cr2O3 NPs (305.7 μmol g-1h-1). The enhancement H2 evolution rate of Fe2O3/Cr2O3 photocatalyst in comparison with bare Cr2O3 NPs was ascribed to facilitate the separation of photocarriers and existing considerable reactive sites. In addition, constructing n-type Fe2O3 and p-type Cr2O3 with close contact is essential in improving the H2 evolution rate. The possible photocatalytic mechanism over Fe2O3/Cr2O3 nanocomposite was addressed based on electrochemical measurements. The construction of the S-scheme system of Fe2O3/Cr2O3 nanocomposite could be suggested to improve the separation of photocarriers through optimal transfer channels owing to the formation of synergistic characteristics. Our results provide avenues for constructing stable photocatalysts with high efficiency for H2 evolution through visible exposure.  相似文献   

16.
Crystallization and magnetic property of Fe2O3 nanoparticle precipitated in SiO2 matrix was investigated. Fe2O3/SiO2 nanocomposite thin film was obtained by annealing of the amorphous Fe-Si-O thin film deposited by RF-magnetron sputtering of (α-Fe2O3)1−x/(SiO2)x composite targets. The Fe2O3 crystallite size increased with decreasing SiO2 area ratio, x of the target and increasing annealing temperature. ?-Fe2O3 with the crystallite size of 20-30 nm was obtained after annealing the film deposited in SiO2 area ratio, x = 0.33-0.42 at 900 °C. Lower SiO2 area ratio (x) than 0.25 and higher annealing temperature resulted in precipitation of α-Fe2O3 with the larger crystallite size than 40 nm. In the case of SiO2 area ratio, x ≥ 0.50, the annealed film was amorphous and showed higher magnetization and smaller coercivity due to the precipitation of very small crystalline γ-Fe2O3. The ?-Fe2O3/SiO2 composite thin film showed ferromagnetic hysteresis with coercive force of 0.14 T.  相似文献   

17.
In this work, we present the role of vanadium ions (V+5 and V+3), oxygen vacancies (VO), and interstitial zinc (Zni) to the contribution of specific magnetization for a mixture of ZnO-V2O5 nanoparticles (NPs). Samples were obtained by mechanical milling of dry powders and ethanol-assisted milling for 1 h with a fixed atomic ratio V/Zn?=?5% at. For comparison, pure ZnO samples were also prepared. All samples exhibit a room temperature magnetization ranging from 1.18?×?10−3 to 3.5?×?10−3 emu/gr. Pure ZnO powders (1.34?×?10−3 emu/gr) milled with ethanol exhibit slight increase in magnetization attributed to formation of Zni, while dry milled ZnO powders exhibit a decrease of magnetization due to a reduction of VO concentration. For the ZnO-V2O5 system, dry milled and thermally treated samples under reducing atmosphere exhibit a large paramagnetic component associated to the formation of V2O3 and secondary phases containing V+3 ions; at the same time, an increase of VO is observed with an abrupt fall of magnetization to σ?~?0.7?×?10−3 emu/gr due to segregation of V oxides and formation of secondary phases. As mechanical milling is an aggressive synthesis method, high disorder is induced at the surface of the ZnO NPs, including VO and Zni depending on the chemical environment. Thermal treatment restores partially structural order at the surface of the NPs, thus reducing the amount of Zni at the same time that V2O5 NPs segregate reducing the direct contact with the surface of ZnO NPs. Additional samples were milled for longer time up to 24 h to study the effect of milling on the magnetization; 1-h milled samples have the highest magnetizations. Structural characterization was carried out using X-ray diffraction and transmission electron microscopy. Identification of VO and Zni was carried out with Raman spectra, and energy-dispersive X-ray spectroscopy was used to verify that V did not diffuse into ZnO NPs as well to quantify O/Zn ratios.  相似文献   

18.
The structural, morphological and magnetic properties of MFe2O4 (M = Co, Ni, Zn, Cu, Mn) type ferrites produced by thermal decomposition at 700 and 1000 °C were studied. The thermal analysis revealed that the ferrites are formed at up to 350 °C. After heat treatment at 1000 °C, single-phase ferrite nanoparticles were attained, while after heat treatment at 700 °C, the CoFe2O4 was accompanied by Co3O4 and the MnFe2O4 by α-Fe2O3. The particle size of the spherical shape in the nanoscale region was confirmed by transmission electron microscopy. The specific surface area below 0.5 m2/g suggested a non–porous structure with particle agglomeration that limits nitrogen absorption. By heat treatment at 1000 °C, superparamagnetic CoFe2O4 nanoparticles and paramagnetic NiFe2O4, MnFe2O4, CuFe2O4 and ZnFe2O4 nanoparticles were obtained.  相似文献   

19.
《Ceramics International》2022,48(12):16554-16561
Herein, we report the solid-state synthesis of (KMg)xFe2-xMo3O12 (0 = x ≤ 1.5) ceramics. Phase composition, crystal structure, morphology, phase transition and thermal expansion behavior of the (KMg)xFe2-xMo3O12 ceramics were investigated by XRD, Raman, XPS, HRTEM, EDX, SEM, TMA and high-temperature XRD. Results indicate that (KMg)3+ dual-cations have successfully replaced Fe3+ in Fe2Mo3O12 ceramics and single-phase monoclinic (KMg)xFe2-xMo3O12 ceramics were prepared for 0.25 = x ≤ 1. (KMg)3+ introduction can increase the density of (KMg)xFe2-xMo3O12 ceramics and effectively improve their negative thermal expansion (NTE) performance. In addition, the phase transition temperature (Tc) of Fe2Mo3O12 was reduced from 508.1 °C to room temperature with the increase of (KMg)3+-substitution. Monoclinic KMgFeMo3O12 ceramics was observed to show stronger NTE in a wider temperature range of 30–700 °C for the first time. Its corresponding coefficient of thermal expansion (CTE) is as high as ?17.21 × 10?6 °C?1. The distortion of [FeO6/MgO6] polyhedra in (KMg)xFe2-xMo3O12 caused by (KMg)3+-substitution contributed to the stronger NTE.  相似文献   

20.
Phase equilibria in the “FeO”-V2O3 system from 1273 to 1808 K and in the range of oxygen partial pressure from 10−15 to 10−4 atm are investigated. High-temperature quenching, XRD, SEM-EDS, and DSC are used to determine the phase relations. Stable regions of (FeO)s.s., (V2O3)s.s., and spinel phases are considerably effected by the oxygen partial pressure, and structural models are proposed as (Fe2+, Fe3+, V2+)1-xO, (V2+, V3+, V4+, Fe3+)2O3+x, and (Fe2+, Fe3+, V3+)(Fe2+, Fe3+, V3+, Va)2O4. Continuous solid solution FeV2O4-Fe3O4 is formed. The nonstoichiometry of FeV2O4 is attributed to the appearance of vanadium vacancies for electroneutrality due to the oxidation of Fe2+. The standard Gibbs energy of formation for FeV2O4 and component activities in FeV2O4-Fe3O4 solid solution at 1623 and 1773 K are derived based on the equilibrium oxygen partial pressure. The cation distribution in FeV2O4 at different temperatures is obtained according to site preference energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号