首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to investigate the age differences for viewing autostereoscopic display, we conduct a 3 × 3 × 3 × 4 mixed design with repeated measurement experiment by using three‐dimensional (3D) video clips. Visual comfort is compared between four age groups with a questionnaire. Results of subjective evaluation are compared through the chi‐square test to check if there is a statistical significance between groups with respect to the distribution of number and proportion according to five levels of visual comfort. Then we examine age differences of visual comfort under three key display parameters including crosstalk, ambient illumination, and disparity. The results indicate that the degree of comfort varies considerably among age groups as the parameters of the display system change. Although the seniors feel most discomfort and the children get best experience in general, there is no statistical difference among the subjects when the ambient illumination is medium or disparity is large. So, it is necessary to take account of the age differences in designing 3D display parameters for enhancing visual comfort.  相似文献   

2.
Many people complain about visual fatigue arising from viewing three‐dimensional (3D) displays. This paper investigates relationship between visual fatigue and viewers' phoria for viewing autostereoscopic 3D displays. Visual fatigue is evaluated through subjective symptoms with a questionnaire and optometric indicators comprising fusion range as well as accommodation convergence/accommodation (AC/A) ratio to measure the variation in visual functions. A screening test is adopted to divide the subjects into two groups based on whether they suffer from phoria. Then a 2 × 2 × 2 mixed design experiment is conducted with display type, viewing stage, and visual state as factors to examine visual fatigue during viewing session. The results show that phoria subjects obtain more severe visual fatigue than normal on subjective evaluation. The normal subjects reveal a more marked difference with phoria in fusion range and AC/A ratio after viewing 3D video clip. Fusion range can significantly distinguish between the two‐dimensional (2D) and 3D condition as well as between the pre‐ and post‐viewing stages. The sensitivity and specificity of fusion range is higher than AC/A ratio with respect to viewing of 3D contents, so it is more appropriate as an optometric indicator of visual fatigue for autostereoscopic 3D displays.  相似文献   

3.
Recent advances in 3D technology have been accompanied by increasing complaints of visual fatigue. The usual explanation for such fatigue is that accommodation and convergence are mismatched during stereoscopic vision. The aim of this study was to measure fixation distances between lens accommodation and convergence in young subjects while they viewed real objects and 3D video clips. Measurements were made using an original instrument. The 3D video clips were presented to subjects using a liquid crystal shutter glass system. The results showed that when viewing real objects, the diopter values of subjects' accommodation and convergence were similar and changed periodically. This measurement method was thus considered to be appropriate for the measurement of stereoscopic vision. We also investigated lens accommodation and convergence when subjects viewed 3D video clips. Both accommodation and convergence were found to move along with the virtual position of 3D video clips. Therefore, there was little discrepancy between accommodation and convergence during the viewing of 3D images.  相似文献   

4.
The visual brain fuses the left and right images projected onto the two eyes from a stereoscopic 3D (S3D) display, perceives parallax, and rebuilds a sense of depth. In this process, the eyes adjust vergence and accommodation to adapt to the depths and parallax of the points they gazed at. Conflicts between accommodation and vergence when viewing S3D content potentially lead to visual discomfort. A variety of approaches have been taken towards understanding the perceptual bases of discomfort felt when viewing S3D, including extreme disparities or disparity gradients, negative disparities, dichoptic presentations, and so on. However less effort has been applied towards understanding the role of eye movements as they relate to visual discomfort when viewing S3D. To study eye movements in the context of S3D viewing discomfort, a Shifted-S3D-Image-Database (SSID) is constructed using 11 original nature scene S3D images and their 6 shifted versions. We conducted eye-tracking experiments on humans viewing S3D images in SSID while simultaneously collecting their judgments of experienced visual discomfort. From the collected eye-tracking data, regions of interest (ROIs) were extracted by kernel density estimation using the fixation data, and an empirical formula fitted between the disparities of salient objects marked by the ROIs and the mean opinion scores (MOS). Finally, eye-tracking data was used to analyze the eye movement characteristics related to S3D image quality. Fifteen eye movement features were extracted, and a visual discomfort predication model learned using a support vector regressor (SVR). By analyzing the correlations between features and MOS, we conclude that angular disparity features have a strong correlation with human judgments of discomfort.  相似文献   

5.
In order to investigate visual experience for watching the autostereoscopic three‐dimensional (3D) projection display, we conduct a subjective evaluation experiment by a questionnaire when viewing video clips. Factor analysis is adopted to classify the evaluation items for the perpetual constructs of visual experience. Then a mixed design with repeated measurement analysis of variance with dimension and display duration as factors is carried out on the evaluation data to check the factorial effects and interactions for statistical significance. The results of factor analysis extract five factors including visual comfort, image quality, distortion, naturalness, and presence, which can be used as comprehensive indicators to evaluate the autostereoscopic 3D projection display. The results of analysis of variance indicate that image quality, which is used to assess two‐dimensional contents, is no longer applicable. It is necessary to give consideration to depth when evaluating 3D visual experience. Although 3D scenes enhance the overall subjective performance such as naturalness and presence, the health issues and stereoscopic distortion related to the introduction of depth cannot be ignored.  相似文献   

6.
Abstract— Conventional stereoscopic displays require viewers to unnaturally keep eye accommodation fixed at one focal distance while they dynamically change vergence to view objects at different distances. This forced decoupling of reflexively linked processes fatigues eyes, causes discomfort, compromises image quality, and may lead to pathologies in developing visual systems. Volumetric displays can overcome this conflict, but only for small objects placed within a limited range of viewing distances and accommodation levels, and cannot render occlusion cues correctly. Our multi‐planar True 3‐D displays generate accommodation cues that match vergence and stereoscopic retinal disparity demands and can display images and objects at viewing distances throughout the full range of human accommodation (from 6.25 cm to infinity), better mimicking natural vision and minimizing eye fatigue.  相似文献   

7.
Autostereoscopic displays are likely to become widely used products in the future. However, certain physiological factors, especially visual comfort, limit their development. In this study, four observational parameters – ambient illuminance, image content, scaling ratio, and horizontal distance between major and minor objects – were evaluated to determine the degree of visual comfort offered by 3D computer‐generated images on an autostereoscopic display. Visual comfort score with the range of 0–1 is designed to represent the degree of visual comfort for the 3D images with different manipulations of ambient illuminance, image content, scaling ratio, and horizontal distance between major and minor objects in this study. Subjects were asked to indicate images that produced discomfort. The proportion of images for each condition where participants indicated that viewing the image was comfortable was computed. Images receiving a proportion of 0.5 or greater were classified as acceptable. The disparity ranges over which acceptable images were attained for each participant and for each condition were analyzed with analysis of variance. The analytical results indicate that ambient illuminance and image content have a significant effect on the acceptable disparity range, while scaling ratio and horizontal distance between major and minor objects did not.  相似文献   

8.
A conflict between accommodation and vergence is one possible cause of visual fatigue and discomfort while viewing conventional three‐dimensional displays. Previous studies have proposed the super multi‐view (SMV) display technique to solve the vergence–accommodation conflict, in which two or more parallax images enter the pupil of the eye with highly directional rays. We simultaneously measured accommodative, vergence, and pupillary responses to SMV three‐dimensional displays to examine whether they can reduce the conflict. For comparison, responses to two‐view stereo images and real objects were also measured. The results show that the range of the accommodative response was increased by the SMV images compared with the two‐view images. The slope of the accommodation–vergence response function for the SMV images was similar to that for the real objects rather than the two‐view images. We also found that enhancement of the accommodative range by the SMV images is noticeable with binocular viewing, indicating that vergence‐induced accommodation plays an important role in viewing SMV displays. These results suggest that SMV displays induced a more natural accommodative response than did conventional, two‐view stereo displays. As a result, SMV displays reduced the vergence–accommodation conflict.  相似文献   

9.
Some people often appear asthenopia symptoms of eye fatigue, double vision, nausea, and dizziness while viewing 3D movies. By testing the changes of accommodation function and ocular movements during watching 3D and 2D movies, the factors in visual discomfort are confirmed in this study.20 subjects with normal visual acuity and binocular vision function view 3D and 2D movies with the same content for 30 min, and the amplitude of accommodation, binocular vergence ability, stereo-acuity, and tear break-up time of the subjects before and after viewing the films are measured. Furthermore, an open-field auto-refractor is utilized for synchronously testing the change of accommodative response while viewing 3D and 2D films, and Skalar IRIS tracking system is applied to record ocular movements through infrared positioning.In comparison with viewing 2D movies, the accommodative response and ocular movements reveal obvious changes while viewing 3D movies. The accommodation ability and binocular vergence ability obviously drop after viewing 3D movies; moreover, the stability of stereo-acuity and tear film also gets worse. The changes of such physiological factors might be the major cause of asthenopia.  相似文献   

10.
3D visual comfort can be influenced by such common factors as binocular parallax, 3D image contrast, viewing distance, and illumination condition. This paper investigates the effect of contrast enhancement and illumination condition on 3D visual fatigue by performing a visual fatigue measurement experiment, of which subjects need to watch 3D images under two illumination conditions and finish a comfort judgment task. The proportion of discomfort images, the subjective evaluation of visual fatigue under 100 lux and 500 lux illumination conditions, the effect of image contrast enhancement on 3D visual fatigue, and the relationship between visual fatigue and proportion of discomfort images were analyzed, respectively. The experimental results showed that both the contrast enhanced by Laplacian algorithm and low illumination condition have positive influence on 3D visual perception of eyes; the 3D visual fatigue of contrast enhanced by Laplacian algorithm under low illumination condition was less than other situations in the experiment. Moreover, it was examined that the proportion of discomfort images can be potential prediction indicator of the 3D visual fatigue.  相似文献   

11.
Abstract— The wide‐viewing freedom often requested by users of autostereoscopic displays can be delivered by spatial multiplexing of multiple views in which a sequence of images is directed into respective directions by a suitable autostereoscopic optical system. This gives rise to two important design considerations — the optical efficiency and the resolution efficiency of the device. Optical efficiency is particularly important in portable devices such as cell phones. A comparison is given between lens and barrier systems for various spatial multiplexing arrangements. Parallax‐barrier displays suffer from reduced optical efficiency as the number of views presented increases whereas throughput efficiency is independent of the number of views for lens displays. An autostereoscopic optical system is presented for the emerging class of highly efficient polarizer‐free displays. Resolution efficiency can be evaluated by investigating quantitative and subjective comparisons of resolution losses and pixel appearance in each 3‐D image. Specifically, 2.2‐in.‐diagonal 2‐D/3‐D panel performance has been assessed using Nyquist boundaries, human‐visual contrast‐sensitivity models, and autostereoscopic‐display optical output simulations. Four‐view vertical Polarization‐Activated Microlens technology with either QVGA mosaic or VGA striped pixel arrangements is a strong candidate for an optimum compromise between display brightness, viewing angle, and 3‐D pixel appearance.  相似文献   

12.
Although numerous potential causes may lead to visual discomfort when viewing content on three‐dimensional (3D) displays, vergence–accommodation conflict is a particular cause of binocular parallax‐based stereoscopic displays, and it is unavoidable. Based on the study of 3D content visual attention, we proposed a novel stereoscopic depth adjustment method to improve the visual comfort and enhance perceived naturalness. The proposed method combined the 3D image saliency and specific viewing condition to establish a novel model for computing the optimum zero‐disparity plane of stereoscopic image. The results of perception experiments, focused on visual comfort and stereoscopic sensation, supported that the proposed method can significantly enhance stereoscopic viewing comfort and even can improve the stereoscopic sensation by insuring the 3D image fusion.  相似文献   

13.
Abstract— To estimate the qualified viewing spaces for two‐ and multi‐view autostereoscopic displays, the relationship between image quality (image comfort, annoying ghost image, depth perception) and various pairings between 3‐D cross‐talk in the left and right views are studied subjectively using a two‐view autostereoscopic display and test charts for the left and right views with ghost images due to artificial 3‐D cross‐talk. The artificial 3‐D cross‐talk was tuned to simulate the view in the intermediate zone of the viewing spaces. It was shown that the stereoscopic images on a two‐view autostereoscopic display cause discomfort when they are observed by the eye in the intermediate zone between the viewing spaces. This is because the ghost image due to large 3‐D cross‐talk in the intermediate zone elicits different depth perception from the depth induced by the original images for the left and right views, so the observer's depth perception is confused. Image comfort is also shown to be better for multi‐views, especially the width of the viewing space, which is narrower than the interpupillary distance, where the parallax of the cross‐talking image is small.  相似文献   

14.
While stereoscopic content can be compelling, it is not always comfortable for users to interact with on a regular basis. This is because the stereoscopic content on displays viewed at a short distance has been associated with different symptoms such as eye-strain, visual discomfort, and even nausea. Many of these symptoms have been attributed to cue conflict, for example between vergence and accommodation. To resolve those conflicts, volumetric and other displays have been proposed to improve the user's experience. However, these displays are expensive, unduly restrict viewing position, or provide poor image quality. As a result, commercial solutions are not readily available. We hypothesized that some of the discomfort and fatigue symptoms exhibited from viewing in stereoscopic displays may result from a mismatch between stereopsis and blur, rather than between sensed accommodation and vergence. To find factors that may support or disprove this claim, we built a real-time gaze-contingent system that simulates depth of field (DOF) that is associated with accommodation at the virtual depth of the point of regard (POR). Subsequently, a series of experiments evaluated the impact of DOF on people of different age groups (younger versus older adults). The difference between short duration discomfort and fatigue due to prolonged viewing was also examined. Results indicated that age may be a determining factor for a user's experience of DOF. There was also a major difference in a user's perception of viewing comfort during short-term exposure and prolonged viewing. Primarily, people did not find that the presence of DOF enhanced short-term viewing comfort, while DOF alleviated some symptoms of visual fatigue but not all.  相似文献   

15.
Imaging delivering to correct retina assisted with tracking technique is a common practice for autostereoscopic displays with stereo two‐view data format. Due to various latencies produced in camera buffering, computer processing, data transmission, and illumination refreshing, delayed image delivery will give rise to a substantial degradation of the 3D display experience. This is particularly obvious for directional backlight 3D displays where significant flickering is resulted as a result of the inherent latency. This work systematically analyzes the source of latency by quantitatively measuring the exact latency value in a typical directional backlight autostereoscopic display. Based on accurate measurement, a motion prediction solution is proposed to improve the synchronization between the backlight illumination and viewer's eye location. Motion prediction helps overcome the lag between the center of illumination and viewer's eye, providing a flicker‐free viewing experience for both a stationary and a moving viewer.  相似文献   

16.
Abstract— This study investigates whether screen luminance or ambient illumination has a significant effect on the perception of 3‐D TV imagery for static images and dynamic films. Two types of stimuli were shown on a multi‐view stereoscopic display: the static image, which included computer‐generated and photographic images, and dynamic film, which contained real‐life and animation images. In each treatment with a different level of screen luminance, subjects completed psychophysical and physiological measurements and subjective comfort evaluations. The results showed that when subjects viewed 3‐D static images, the ambient illumination affected psychophysical visual fatigue and screen luminance had a significant effect on subjective comfort evaluation and visual discrimination performance. However, when subjects viewed 3‐D dynamic films, screen luminance was the major factor causing psychophysical visual fatigue, and ambient illumination significantly affected subjective comfort evaluation. The outcomes contribute to knowledge concerning the suitable viewing conditions for the 3‐D viewing experience. Future work will explore the intolerance threshold of the lowest display luminance or the effect of decomposition of the screen on other physiological measurements.  相似文献   

17.
The system described in this paper provides a real-time 3D visual experience by using an array of 64 video cameras and an integral photography display with 60 viewing directions. The live 3D scene in front of the camera array is reproduced by the full-color, full-parallax autostereoscopic display with interactive control of viewing parameters. The main technical challenge is fast and flexible conversion of the data from the 64 multicamera images to the integral photography format. Based on image-based rendering techniques, our conversion method first renders 60 novel images corresponding to the viewing directions of the display, and then arranges the rendered pixels to produce an integral photography image. For real-time processing on a single PC, all the conversion processes are implemented on a GPU with GPGPU techniques. The conversion method also allows a user to interactively control viewing parameters of the displayed image for reproducing the dynamic 3D scene with desirable parameters. This control is performed as a software process, without reconfiguring the hardware system, by changing the rendering parameters such as the convergence point of the rendering cameras and the interval between the viewpoints of the rendering cameras.  相似文献   

18.
A metric of the 3D image quality of autostereoscopic displays based on optical measurements is proposed. This metric uses each view's luminance contrast, which is defined as the ratio of maximum luminance at each viewing position to total luminance at that position. Conventional metrics of the autostereoscopic display based on crosstalk, which uses “wanted” and “unwanted” lights. However, in case of the multiple‐views‐type autostereoscopic displays, it is difficult to distinguish exactly which lights are wanted lights and which are unwanted lights. This paper assumes that the wanted light has a maximum luminance at the good stereoscopic viewing position, and the unwanted light also has a maximum luminance at the worst pseudo‐stereoscopic viewing position. By using the maximum luminance that is indexed by view number of the autostereoscopic display, the proposed method enables characterizing stereoscopic viewing conditions without using wanted/unwanted light. A 3D image quality metric called “stereo luminance contrast,” the average of both eyes' contrast, is proposed. The effectiveness of the proposed metric is confirmed by the results of optical measurement analyses of different types of autostereoscopic displays, such as the two‐view, scan‐backlight, multi‐view, and integral.  相似文献   

19.
多视点自动立体显示有望成为今后主流的三维显示技术,它是一种无需借助任何辅助观察设备的多视点、多观察区、高分辨率、显示效果逼真的三维显示方式。阐述了基于多投影的多视点自动立体显示系统的设计原理,详细地描述了系统的软硬件构架,建立了基于多投影仪和水平光学各向异性显示结构的自动立体显示样机,开发了投影仪阵列自动校准系统,提高了投影仪的校准精度,避免了因投影仪数目多而导致的繁琐的校准过程。实验结果能够给观众带来逼真的三维视觉体验。  相似文献   

20.
ObjectiveVisually induced motion sickness (VIMS) and increased postural sway are two adverse side effects that may occur when viewing motion stimuli. However, whether these effects are elevated to a greater extent when viewing stereoscopic 3D motion stimuli, compared to 2D stimuli on a TV screen, has not been investigated under controlled circumstances. Therefore this study aimed at investigating VIMS and postural sway before, during, and directly after viewing 2D and 3D motion stimuli, on a commonly available TV screen.Method16 Participants were exposed to an aviation documentary shown in 2D and in 3D on separate occasions. Before, during, and after exposure, VIMS and postural sway were measured. VIMS was quantified by a rating scale giving a single number, and by a multi-symptom questionnaire that assessed multiple VIMS symptoms separately. Sway path length, standard deviations and short-range and long-range scaling components of the center of pressure were calculated as measures of postural sway.ResultsVIMS symptom severity, as obtained with the single rating scale, did not show a significant increase to either 2D or 3D exposure. The multi-symptom questionnaire did reveal significant increases in VIMS symptom severity to both 2D and 3D exposure. However, VIMS was not significantly more increased in case of 3D exposure compared to 2D exposure. All postural sway measures (sway path length, standard deviation in mediolateral and anteroposterior direction, as well as the short-range scaling components) increased significantly as a result of exposure. None of the postural sway measures was differentially affected to 3D as compared to 2D exposure.ConclusionViewing 3D motion stimuli did not cause more serious VIMS symptoms, compared to viewing motion stimuli in 2D. We attribute this lack of difference to the fact that the 3D effects in this documentary were optimized for viewing in a cinema, the projection on the TV-screen thus causing quarantining of the visual input. The increase in postural sway, irrespective of image type, may reflect exploratory behavior, allowing the participant to gain more information about self-orientation with respect to the virtual environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号