共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
采用两步法,通过磁力搅拌和超声振荡,制备了以纳米石墨烯片GnPs为导热增强相的纳米GnPs/石蜡复合相变蓄热材料。红外光谱分析结果表明GnPs与石蜡之间未发生化学反应,仅是简单的物理复合作用。差示扫描量热分析(DSC)表明,复合材料的相变温度几乎保持不变,但其相变潜热随纳米GnPs含量的增加呈降低趋势,在质量分数为1%时,熔化和凝固过程的相变潜热较纯石蜡分别下降约9.6%和10.1%。此外,复合材料的导热系数随GnPs质量分数增加而增加,在质量分数为2%时,导热系数相对提高率为34.2%,表现出良好的强化导热效果。 相似文献
5.
目的 为了控制电子设备工作温度,研发一种相变储能模块,并研究其控温性能。方法 本文通过仿真对以32号石蜡、62号石蜡和质量分数为6%的膨胀石墨(EG)-62号石蜡为相变工质的储能模块进行研究,分析相变材料、翅片材料以及加热功率对相变储能模块控温性能的影响。结果 32号石蜡在900 s时接近完全融化,62号石蜡在2 000 s时才融化过半,膨胀石墨-石蜡复合材料在1 250 s就已经接近完全融化,填充62号石蜡的Al翅片模块的温升速率为0.035 ℃/s,Cu翅片模块的温升速率为0.03 ℃/s,相比未填充相变材料的模块温升速率分别降低了73.1%和70%。结论 具有不同物性参数的相变材料,在不同工况下其呈现的控温性能也各不相同,但是在较高功率工况下,熔点较低或导热系数较高的相变材料具有更好的控温性能。储能模块内部导热翅片对内部强化换热效果明显,翅片导热系数越高,越有利于模块的控温。 相似文献
6.
7.
8.
9.
10.
选择月桂酸(LA)-十四醇(TD)复合相变材料作为基材,分别以Al_2O_3、Fe_2O_3和CuO纳米颗粒作为添加剂,SDBS为分散剂,制备了LA-TD纳米复合相变材料。从分散剂添加量、超声分散时间、纳米颗粒添加种类和质量分数方面研究了Al_2O_3、Fe_2O_3和CuO 3种纳米复合相变材料的最佳制备条件。在最佳制备条件下,利用导热系数测定仪和DSC测试确定了3种纳米复合相变材料的导热系数、相变温度及相变潜热,并对复合相变材料进行了降温步冷和升温融化实验,研究了纳米颗粒对复合相变材料吸/放热速率的影响。最终确认Fe_2O_3纳米颗粒对LA-TD复合相变材料的传热强化效果最好,1%Fe_2O_3含量的LA-TD纳米复合相变材料的导热系数为0.3319 W/(m·K),较LA-TD纯相变材料提高了36.88%,其相变温度和相变潜热分别为24.76℃和112.61 J/g。纳米颗粒的添加提高了复合相变材料的放热速率,从50~15℃的凝固时间较LA-TD纯相变材料缩短了260 s(7.22%),但纳米颗粒的添加增加了流体粘度,不利于相变融化过程的自然对流。300次的融化/凝固热循环实验表明LA-TD/Fe_2O_3纳米复合材料具有良好的热稳定性。 相似文献
11.
膨胀石墨(EG)是多孔吸附材料中具有优良传热效果的材料。为进一步提高石蜡(PW)/EG复合相变材料的热性能,以PW为相变主材,EG为载体,碳化硅(SiC)、碳纤维(CF)或活性炭(AC)为强化传热介质,通过熔融共混法制备了不同质量分数配比的复合相变材料(CPCM)并压制成形。采用导热系数测试仪、差示扫描量热仪、扫描电子显微镜对CPCM的热性能进行测试和表征。结果表明,当CPCM中PW∶EG∶SiC(质量比)为70∶25∶5时,CPCM的导热系数为1.827W/(m·K),潜热为147.2J/g,分别为PW∶EG=70∶30的CPCM的1.022倍和1.036倍。所制备的CPCM没有新物质产生,相变温度合适,微观结构紧凑,热性能好。 相似文献
12.
以工业石蜡为相变芯材,在硅烷偶联剂参与下,通过溶胶-凝胶法制备石蜡/SiO2储能相变材料。并利用透射电子显微镜,热重分析,傅里叶红外光谱仪和方差扫描量热法等测试技术对石蜡/SiO2储能相变材料的结构和性能进行了测试和分析,最后利用瞬态热线法对石蜡/SiO2储能相变材料的导热系数进行了测试。结果表明,石蜡/SiO2储能相变材料的相变芯材石蜡在吸热熔化后不会渗漏;石蜡/SiO2储能相变材料中石蜡的含量约为39%时,相变温度和相变潜热分别为39.15℃和59.33J/g;石蜡/SiO2储能相变材料的导热系数为0.0845 W/(m·K),可作为一种良好的保温隔热建筑材料。 相似文献
14.
不同聚烯烃包覆石蜡的定形相变材料性能比较研究 总被引:1,自引:0,他引:1
用乙烯-辛烯共聚物(POE)、乙烯-醋酸乙烯共聚物(EVA)取代高密度聚乙烯(HDPE)作为包覆材料,石蜡作为相变材料,通过热熔法制备了60%石蜡含量的定形相变材料(FSPCM),以此来提高定形相变材料的稳定性。用高温老化试验,恒温水浴试验和温度循环试验研究了定形相变材料的稳定性能。试验结果表明,POE/石蜡定形相变材料和EVA/石蜡定形相变材料的质量损失率远小于HDPE/石蜡定形相变材料的质量损失率。利用DSC研究了定形相变材料、石蜡及相应的基体树脂的热性能,并以此计算定形相变材料中实际的石蜡含量。结果表明,当设计含量为60%时,POE/石蜡定形相变材料和EVA/石蜡定形相变材料的实际石蜡含量为49.75%和58.49%,而HDPE/石蜡定形相变材料的仅为42.78%。这一结果与HDPE/石蜡定形相变材料样品在平板硫化机制备过程中发现有较多石蜡流出相一致。 相似文献
15.
为提升广泛应用于相变储能领域的石蜡的导热系数,在手套箱内将导热系数高、熔点低、密度小的金属Na与石蜡复合为Na/paraffin新型相变储能材料,并对其导热系数、相变潜热及储/放热特性进行研究。结果表明:5%Na/95%paraffin复合相变储能材料导热系数较纯石蜡提高了17.6倍,储/放热速率均较纯石蜡提升了1倍;经过200次循环实验后,3%Na/97%paraffin复合相变储能材料相变温度由60.58℃下降到59.65℃,相变潜热由166.7520J·g~(-1)下降到160.5632J·g~(-1),热导率由2.33W·m~(-1)·K~(-1)减少到1.98W·m~(-1)·K~(-1)。 相似文献
16.
基于纳米粒子/相变石蜡乳状液的研究 总被引:1,自引:0,他引:1
介绍了纳米流体的制备方法,探讨了纳米流体强化传热的机理.结合本实验室的研究方向,首次提出了在相变储热石蜡乳状液中添加纳米粒子强化石蜡乳状液传热性能的方法,并制备了纳米铝/石蜡乳状液.分析了该悬浮液的性能,实验结果表明,将0.1%(质量分数)的纳米铝粉分散于石蜡乳状液中,悬浮液的导热系数提高了29.4%,大大提高了石蜡乳状液的传热速率.与水作为储热、传热介质相比,该新型相变纳米流体具有储热密度大、换热能力强的优点.最后,指出了该新型相变纳米流体研究存在的问题并展望了其应用前景. 相似文献
17.
针对水作为冷藏保鲜领域常见的蓄冷剂存在相变时过冷度大、导热系数小的现象,研制了一种以水作为基液,添加纳米粒子及分散剂的复合相变材料,该材料配方质量比为水+0.7%纳米二氧化钛(TiO_2)+1.0%十二烷基苯磺酸钠(SDBS),相变温度为0.216℃,相变潜热为353.1 k J/kg。在水中加入纳米TiO_2使水在相变过程的过冷度降低了5~6℃,且导热系数较基液提高了62.7%,从0.598 8 W/(m·K)升至0.974 5 W/(m·K);同时添加分散剂SDBS,改善了水基纳米TiO_2的沉降问题,提高了材料的稳定性,防止相分离。结合理论与实验,总结分析了纳米TiO_2与分散剂SDBS不同质量比的水基纳米复合相变材料的热性能,确定纳米TiO_2与分散剂SDBS在水中的最佳质量添加比为7∶10。通过最优例材料静置后的颜色观察和导热系数测试,表明纳米TiO_2在水中具有良好的分散稳定性。 相似文献
18.
19.
采用渗流法制备的泡沫铝制作了泡沫铝-石蜡复合相变材料,对其蓄、放热性能进行了研究。结果表明:(1)复合相变材料与水的体积比为1:4、泡沫铝骨架孔隙率分别为54.81%、60.52%、64.37%、69.74%时,复合相变材料从24℃升高到66℃所需的时间分别为190s、305s、380s、395s;66℃的复合相变材料放入24℃的水中,放热时间分别为270s、355s、540s、600s,水温升高值分别为8.2℃、8.7℃、9.4℃、10.1℃;(2)对比泡沫铝骨架孔隙率60.52%的复合相变材料、泡沫铝和石蜡的蓄、放热过程,其蓄、放热时间分别为305s、60s、870s和355s、30s、1470s;(3)泡沫铝骨架孔隙率为69.74%-54.81%的复合相变材料,其理论等效导热系数在61.16 W·m-1·k-1-91.40W·m-1·k-1之间。 相似文献
20.
由二元相图确定出石蜡-硬脂酸二元低共熔物的质量配比为m(石蜡)∶m(硬脂酸)=17∶8,按上述配比通过熔融共混法制备出石蜡-硬脂酸复合相变材料,将石蜡-硬脂酸复合相变材料与石墨通过熔融共混法制备出石蜡-硬脂酸/石墨复合相变材料,通过储/放热实验和差示扫描量热法(DSC)对石蜡-硬脂酸和石蜡-硬脂酸/石墨复合相变材料的热性能进行了测试和表征。结果表明,石蜡-硬脂酸复合相变材料的相变储热性能好;随着石墨含量的增加,石蜡-硬脂酸/石墨复合相变材料的储/放热时间明显缩短,导热性能大幅度提高,但相变潜热逐渐降低,相变温度保持不变。制备的石蜡-硬脂酸/石墨复合相变材料具有合适的相变温度、较高的相变潜热,导热性能优良,可用于低温储能领域。 相似文献