共查询到20条相似文献,搜索用时 15 毫秒
1.
Alfredo Berzal-Herranz Beatriz Berzal-Herranz Sara Esther Ramos-Lorente Cristina Romero-Lpez 《International journal of molecular sciences》2022,23(15)
Viruses rely on the cellular machinery of host cells to synthesize their proteins, and have developed different mechanisms enabling them to compete with cellular mRNAs for access to it. The genus Flavivirus is a large group of positive, single-stranded RNA viruses that includes several important human pathogens, such as West Nile, Dengue and Zika virus. The genome of flaviviruses bears a type 1 cap structure at its 5′ end, needed for the main translation initiation mechanism. Several members of the genus also use a cap-independent translation mechanism. The present work provides evidence that the WNV 5′ end also promotes a cap-independent translation initiation mechanism in mammalian and insect cells, reinforcing the hypothesis that this might be a general strategy of flaviviruses. In agreement with previous reports, we show that this mechanism depends on the presence of the viral genomic 3′ UTR. The results also show that the 3′ UTR of the WNV genome enhances translation of the cap-dependent mechanism. Interestingly, WNV 3′ UTR can be replaced by the 3′ UTR of other flaviviruses and the translation enhancing effect is maintained, suggesting a molecular mechanism that does not involve direct RNA-RNA interactions to be at work. In addition, the deletion of specific structural elements of the WNV 3′ UTR leads to increased cap-dependent and cap-independent translation. These findings suggest the 3′ UTR to be involved in a fine-tuned translation regulation mechanism. 相似文献
2.
Elena Rykova Nikita Ershov Igor Damarov Tatiana Merkulova 《International journal of molecular sciences》2022,23(22)
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3′untranslated regions (3′UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3′UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3′UTRs. Numerous data show the role of SNPs in 3′UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs. 相似文献
3.
Aleksandra A. Kuznetsova Anastasia A. Gavrilova Alexander A. Ishchenko Murat Saparbaev Olga S. Fedorova Nikita A. Kuznetsov 《International journal of molecular sciences》2022,23(22)
In yeast Saccharomyces cerevisiae cells, apurinic/apyrimidinic (AP) sites are primarily repaired by base excision repair. Base excision repair is initiated by one of two AP endonucleases: Apn1 or Apn2. AP endonucleases catalyze hydrolytic cleavage of the phosphodiester backbone on the 5′ side of an AP site, thereby forming a single–strand break containing 3′–OH and 5′–dRP ends. In addition, Apn2 has 3′–phosphodiesterase activity (removing 3′–blocking groups) and 3′ → 5′ exonuclease activity (both much stronger than its AP endonuclease activity). Nonetheless, the role of the 3′–5′–exonuclease activity of Apn2 remains unclear and presumably is involved in the repair of damage containing single–strand breaks. In this work, by separating reaction products in a polyacrylamide gel and by a stopped–flow assay, we performed a kinetic analysis of the interaction of Apn2 with various model DNA substrates containing a 5′ overhang. The results allowed us to propose a mechanism for the cleaving off of nucleotides and to determine the rate of the catalytic stage of the process. It was found that dissociation of a reaction product from the enzyme active site is not a rate–limiting step in the enzymatic reaction. We determined an influence of the nature of the 3′–terminal nucleotide that can be cleaved off on the course of the enzymatic reaction. Finally, it was found that the efficiency of the enzymatic reaction is context–specific. 相似文献
4.
5.
Franziska Alfen Elena Putscher Michael Hecker Uwe Klaus Zettl Andreas Hermann Jan Lukas 《International journal of molecular sciences》2022,23(23)
Fabry disease (FD) is a rare X-linked disease due to a multiverse of disrupting mutations within the GLA gene encoding lysosomal α-galactosidase A (AGAL). Absent AGAL activity causes the accumulation of complex glycosphingolipids inside of lysosomes in a variety of cell types and results in a progressive multisystem disease. Known disease-associated point mutations in protein-coding gene regions usually cause translational perturbations and result in premature chain termination, punctual amino acid sequence alterations or overall altered sequence alterations downstream of the mutation site. However, nucleotide exchanges at the border between introns and exons can affect splicing behavior and lead to abnormal pre-mRNA processing. Prediction with the Human Splicing Finder (HSF) revealed an indication of a significant change in splicing-relevant information for some known FD-associated GLA mutations. To experimentally determine the extent of the change, we made use of a minigene reporter assay and verified alternative splicing events for the exonic mutations c.194G>T and c.358C>G, which led to the usage of alternative donor splice sites at exon 1 and exon 2, respectively. In addition, the mutations c.548G>T and c.638A>T led to significant exon 4 skipping. We conclude that splicing phenotype analysis should be employed in the in vitro analysis of exonic GLA gene mutations, since abnormal splicing may result in a reduction of enzyme activity and alter the amenability for treatment with pharmacological chaperone (PC). 相似文献
6.
7.
8.
9.
As a result of external and endocellular physical-chemical factors, every day approximately ~105 DNA lesions might be formed in each human cell. During evolution, living organisms have developed numerous repair systems, of which Base Excision Repair (BER) is the most common. 5′,8-cyclo-2′-deoxyadenosine (cdA) is a tandem lesion that is removed by the Nucleotide Excision Repair (NER) mechanism. Previously, it was assumed that BER machinery was not able to remove (5′S)cdA from the genome. In this study; however, it has been demonstrated that, if (5′S)cdA is a part of a single-stranded clustered DNA lesion, it can be removed from ds-DNA by BER. The above is theoretically possible in two cases: (A) When, during repair, clustered lesions form Okazaki-like fragments; or (B) when the (5′S)cdA moiety is located in the oligonucleotide strand on the 3′-end side of the adjacent DNA damage site, but not when it appears at the opposite 5′-end side. To explain this phenomenon, pure enzymes involved in BER were used (polymerase β (Polβ), a Proliferating Cell Nuclear Antigen (PCNA), and the X-Ray Repair Cross-Complementing Protein 1 (XRCC1)), as well as the Nuclear Extract (NE) from xrs5 cells. It has been found that Polβ can effectively elongate the primer strand in the presence of XRCC1 or PCNA. Moreover, supplementation of the NE from xrs5 cells with Polβ (artificial Polβ overexpression) forced oligonucleotide repair via BER in all the discussed cases. 相似文献
10.
11.
Adam Zmysowski Jerzy Sitkowski Katarzyna Bus Katarzyna Michalska Arkadiusz Szterk 《International journal of molecular sciences》2021,22(19)
It was proven that sterols subjected to high-temperature treatment can be concatenated, which results in polymeric structures, e.g., 3β,3′β-disteryl ethers. However, it was also proven that due to increased temperature in oxygen-containing conditions, sterols can undergo various oxidation reactions. This study aimed to prove the existence and perform quantitative analysis of oxidized 3β,3′β-disteryl ethers, which could form during high-temperature treatment of sterol-rich samples. Samples were heated at 180, 200 and 220 °C for 0.5 to 4 h. Quantitative analyses of the oxidized 3β,3′β-disteryl ethers were performed with liquid extraction, solid-phase extraction and liquid chromatography coupled with mass spectrometry. Additionally, to perform this analysis, the appropriate standards of all oxidized 3β,3′β-disteryl ethers were prepared. Eighteen various oxidized 3β,3′β-disteryl ethers (derivatives of 3β,3′β-dicholesteryl ether, 3β,3′β-disitosteryl ether and 3β,3′β-distigmasteryl ether) were prepared. Additionally, the influence of metal compounds on the mechanism of ether formation at high temperatures was investigated. 相似文献
12.
Matteo Zurlo Romeo Romagnoli Paola Oliva Jessica Gasparello Alessia Finotti Roberto Gambari 《International journal of molecular sciences》2022,23(11)
(1) Background: In the development of new and more effective anticancer approaches, combined treatments appear of great interest. Combination therapy could be of importance in the management of glioblastoma (GBM), a lethal malignancy that accounts for 42% of cancer of the central nervous system, with a median survival of 15 months. This study aimed to verify the activity on a glioblastoma cancer cell line of one of the most active compounds of a novel series of tubulin polymerization inhibitors based on the 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold, used in combination with a miRNA inhibitor molecule targeting the oncomiRNA miR-10b-5p. This microRNA was selected in consideration of the role of miR-10b-5p on the onset and progression of glioblastoma. (2) Methods: Apoptosis was analyzed by Annexin-V and Caspase 3/7 assays, efficacy of the anti-miR-10b-5p was assessed by determining the miR-10b-5p content by RT-qPCR. (3) Results: The results obtained show that a “combination therapy” performed by combining the use of an anti-miR-10b-5p and a 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole derivative is an encouraging strategy to boost the efficacy of anticancer therapies and at the same time to reduce side effects. 相似文献
13.
Wenhui Zhao Jinfeng Zhao Miaomiao Hou Yue Wang Yang Zhang Xin Zhao Ce Zhang Dawei Guo 《International journal of molecular sciences》2014,15(2):2946-2958
SIRT1 is a pleiotropic protein that plays critical and multifunctional roles in metabolism, senescence, longevity, stress-responses, and cancer, and has become an important therapeutic target across a range of diseases. Recent research demonstrated that SIRT1 pre-mRNA undergoes alternative splicing to produce different isoforms, such as SIRT1 full-length and SIRT1-ΔExon8 variants. Previous studies revealed these SIRT1 mRNA splice variants convey different characteristics and functions to the protein, which may in turn explain the multifunctional roles of SIRT1. However, the mechanisms underlying the regulation of SIRT1 alternative splicing remain to be elucidated. Our objective is to search for new pathways that regulate of SIRT1 alternative splicing. Here we describe experiments showing that HuR and TIA1/TIAL1, two kinds of RNA-binding proteins, were involved in the regulation of alternative splicing of SIRT1 pre-mRNA under normal and stress circumstances: HuR increased SIRT1-ΔExon8 by promoting SIRT1 exon 8 exclusion, whereas TIA1/TIAL1 inhibition of the exon 8 exclusion led to a decrease in SIRT1-ΔExon8 mRNA levels. This study provides novel insight into how the alternative splicing of SIRT1 pre-mRNA is regulated, which has fundamental implications for understanding the critical and multifunctional roles of SIRT1. 相似文献
14.
Laia Lidn Laura Lla-Hierro Mario Nuvolone Adriano Aguzzi Jesús vila Isidro Ferrer Jos Antonio del Río Rosalina Gavín 《International journal of molecular sciences》2021,22(10)
Tau protein is largely responsible for tauopathies, including Alzheimer’s disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3β, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3β in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3β activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3β. 相似文献
15.
Monia Lenzi Sofia Gasperini Veronica Cocchi Micaela Tirri Matteo Marti Patrizia Hrelia 《International journal of molecular sciences》2022,23(10)
The novel psychoactive substance (NPS) 4-Methyl-5-(4-methylphenyl)-4,5-dihydroxazol-2-amine (4,4′-DMAR) shows psychostimulant activity. Data on the acute toxicity of 4,4′-DMAR are becoming increasingly available, yet the long-term effects are still almost unknown. In particular, no data on genotoxicity are available. Therefore, the aim of the present study was to evaluate its genotoxic potential using the “In Vitro Mammalian Cell Micronucleus Test” (MNvit) on (±)cis-4,4′-DMAR and (±)trans-4,4′-DMAR and their associations. The analyses were conducted in vitro on human TK6 cells. To select suitable concentrations for MNvit, we preliminarily evaluated cytotoxicity and apoptosis. All endpoints were analysed by flow cytometry. The results reveal the two racemates’ opposite behaviours: (±)cis-4,4′-DMAR shows a statistically significant increase in micronuclei (MNi) frequency that (±)trans-4,4′-DMAR is completely incapable of. This contrast confirms the well-known possibility of observing opposite biological effects of the cis- and trans- isomers of a compound, and it highlights the importance of testing single NPSs that show even small differences in structure or conformation. The genotoxic capacity demonstrated stresses an additional alarming toxicological concern related to this NPS. Moreover, the co-treatments indicate that consuming both racemates will magnify the genotoxic effect, an aspect to consider given the unpredictability of illicit drug composition. 相似文献
16.
Hernn Mauricio Rivera Esther Natalia Muoz Daniel Osuna Mauro Florez Michael Carvajal Luis Alberto Gmez 《International journal of molecular sciences》2021,22(4)
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU. 相似文献
17.
18.
Priyadharshni Muniyandi Vivekanandan Palaninathan Tatsuro Hanajiri Toru Maekawa 《International journal of molecular sciences》2022,23(23)
Direct reprogramming of cardiac fibroblasts to induced cardiomyocytes (iCMs) is a promising approach to cardiac regeneration. However, the low yield of reprogrammed cells and the underlying epigenetic barriers limit its potential. Epigenetic control of gene regulation is a primary factor in maintaining cellular identities. For instance, DNA methylation controls cell differentiation in adults, establishing that epigenetic factors are crucial for sustaining altered gene expression patterns with subsequent rounds of cell division. This study attempts to demonstrate that 5′AZA and miR-133a encapsulated in PLGA-PEI nanocarriers induce direct epigenetic reprogramming of cardiac fibroblasts to cardiomyocyte-like cells. The results present a cardiomyocyte-like phenotype following seven days of the co-delivery of 5′AZA and miR-133a nanoformulation into human cardiac fibroblasts. Further evaluation of the global DNA methylation showed a decreased global 5-methylcytosine (5-medCyd) levels in the 5′AZA and 5′AZA/miR-133a treatment group compared to the untreated group and cells with void nanocarriers. These results suggest that the co-delivery of 5′AZA and miR-133a nanoformulation can induce the direct reprogramming of cardiac fibroblasts to cardiomyocyte-like cells in-vitro, in addition to demonstrating the influence of miR-133a and 5′AZA as epigenetic regulators in dictating cell fate. 相似文献
19.
Julita Gumna Maciej Antczak Ryszard W. Adamiak Janusz M. Bujnicki Shi-Jie Chen Feng Ding Pritha Ghosh Jun Li Sunandan Mukherjee Chandran Nithin Katarzyna Pachulska-Wieczorek Almudena Ponce-Salvatierra Mariusz Popenda Joanna Sarzynska Tomasz Wirecki Dong Zhang Sicheng Zhang Tomasz Zok Eric Westhof Zhichao Miao Marta Szachniuk Agnieszka Rybarczyk 《International journal of molecular sciences》2022,23(17)
RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5- and 3-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use. 相似文献